Vegetation Distribution and Soil Salinity on Daeho Reclaimed Tidal Land of Kyonggi-Bay in the Mid-West Coast of Korea

우리나라 중서부 서해안 대호 간척지의 식생 분포와 토양 염농도

  • Received : 2009.11.17
  • Accepted : 2009.12.08
  • Published : 2009.12.30

Abstract

Vegetation distribution and soil salinity were surveyed on the conservation plot in the Daeho reclaimed tidal land, in where the plants species distribution was more various than a periodically inundated tidal flat and the early stage of reclamation. According to the soil salinity where the vegetation patches were occurred, the mono patches of Salicornia europaea, Suaeda maritima, and Suaeda glauca were distributed in the average range of 31.05 dS/m in soil salinity, the mixed patches of them were distributed in the average range of 42.75 dS/m. Therefore, Salicornia europaea, Suaeda maritima, and Suaeda glauca showed strong salt tolerance. The mono patches of Aster tripolium, Sonchus brachyotus, and Scirpus planiculm were distributed in the range of 11.73 dS/m in soil salinity, and the mixed patches were distributed in the average range of 9.43 dS/m. Therefore Aster tripolium, Sonchus brachyotus, and Scirpus planiculmis showed moderate salt tolerance. The mono patches of Imperata cylindrica, Trifolium pratense, Miscanthus sinensis, Setaria viridis, and Trisetum bifidum were distributed in the range of 2.42 dS/m in soil salinity. These species showed characteristics of glycophytes with weak salt tolerance. The distribution of vegetation patches was influenced by the soil salinity as pioneer halophytes patches occurred at higher soil salinity zone than facultative halophytes patches, glycophytes patches occurred at lower soil salinity zone than facultative halophytes. These results suggested that occurrence of plant species and plant distribution type might be useful index to evaluate the soil salinity and desalinization in the reclaimed land of the midwest coastal area of Korea.

Keywords

Vegetation distribution;Soil salinity;Reclaimed tidal land;Halophytes

References

  1. Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecol. 72: 125-137 https://doi.org/10.2307/1938908
  2. Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil: Ⅱ. A non-Brownian fractal model and its application in soil.Soil. Sci. Soc. Am. J. 34: 599-620
  3. Eghabll, B., L. N. Mielke, G. A. Calvo, and W. W. Wilhelm. 1993. Fractal description of soil fragmentation for various tillage methods and crop sequences. Soil. Sci. Soc. Am. J. 57: 1337-1341 https://doi.org/10.2136/sssaj1993.03615995005700050029x
  4. Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. of Pla. Physi. and Pla.Mole. Bio. 28: 89-121 https://doi.org/10.1146/annurev.arplant.49.1.643
  5. Kim, E. K., Chun, S, Joo, Y. K., Jung, Y. S., and Jung, H. G. 2008. Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea. Korean J. Soil Sci. Fert. 41(2): 83-93
  6. Lee, Y. N. 2002. Flora of Korea. Kyo-Hak Publishing Co., Ltd.,Seoul
  7. Noordwijk-Puijk, K. V., W. G. Beeftink, and P. Hogeweg. 1979. Vegetation development on salt-marsh flats after disappearance of the tidal factor. Vegetatio 39: 1-13 https://doi.org/10.1007/BF00055323
  8. Sanderson, E. W., S. L. Ustin, and T. C. Foin. 2000. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA. Plant Ecol. 146: 29-41 https://doi.org/10.1023/A:1009882110988
  9. Tran, T. S. and R. R. Simard. 1993. Mehlich III-Extractable Elements. p. 43-49. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London
  10. US Salinity Laboratory Staff. 1954. Diagnosis and improvement of Saline and alkali soils. USDA Handbook No. 60
  11. Min, B. M. and J. H. Kim. 1997. Soil texture and desalination after land reclamation on the west coast of Korea. Korean J. Ecol. 20(2): 133-143
  12. Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil: I. The application of fractal concepts to nested levels of soil variation. Soil. Sci. Soc. Am. J. 34: 577-597
  13. Kim, C, S., and T. G. Song. 1983. Ecological studies on the halophyte communities at western and southern coasts in Korea(IV). Korean J. Ecol. 6(3): 167-176
  14. Culberson, S. D. 2001. The interaction of physical and biological determinants producing vegetation zonation in tidal mashes of the San Francisco Bay Estuary, California, USA. Ph.D. dissertation,University of California, Ecology
  15. Lee, S. H, Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected desalinization process in Dae-Ho reclaimed land. Korean J. Environ. Agri. 19(4): 364-369
  16. Ihm, B. S. 2001. Distribution of halophytes on the south coast of Korea. Nature Conservation 116: 9-14
  17. Lee, J. S. 1988. Studies on the distribution of vegetation in the salt marsh of the Mankyung River Estuary. Korean J. Environ. Bio. 6(1): 1-10
  18. Park, S. H. 2001. Colored Illustrations of Naturalized Plants of Korea. Ilchokak Co., Seoul
  19. Kang, B. H., and S. I. Shim. 1998. Screening of tolerant plants and development of biological monitoring technique for saline stress.I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Korean J.Environ. Agri. 17(1): 26-33
  20. USDA-ARS George E. Brown, Jr. Salinity Lab. 1999. Halophyte database salt-tolerance plants and their uses. USDA ARS by N.P.Yensen http://www.ussl.ars.usda.gov/pls/caliche/halophyte.prefce
  21. Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecol. 72: 138-148 https://doi.org/10.2307/1938909
  22. SAS. 2000. The SAS system for Windows. SAS Institute, USA
  23. Kravchenko, A. N., C. W. Boast, and D. G. Bullock. 1999. Multifractal analysis of soil spatial variability. Agro. J. 91: 1033-1041 https://doi.org/10.2134/agronj1999.9161033x
  24. Jung, Y. S., W. H. Lee, J. H. Joo, I. H. Yu, W. S. Shin, Y. Ahn, and S. H. Yoo. 2003. Use of electromagnetic inductance for salinity measurement in reclaimed saline land. Korean J. Soil Sci. Fert. 36(2): 57-65
  25. Kim, D. Y. and J. S. Lee. 1983. Ecological studies on the halophyte community of the coast.Ⅱ. On the reclaimed tidal flat land of Naichodo Ri. p. 399-407. Gunsan National University
  26. Lee, T. B. 1999. Illustrated Flore of Korea. Hayng-Moon Publishing Co., Seoul
  27. Sheldrick, B. H. and C. Wang. 1993. Particle Size Distribution. p.499-511. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London
  28. Park, S. H. 2001. Foreign Naturalized plant of Korea. Dae-Won Publishing Co., Seoul
  29. Zhao, K., F. Hai, and I. A. Ungar. 2002. Survey of halophyte species in China. Plant Sci. 163(3): 491-498 https://doi.org/10.1016/S0168-9452(02)00160-7
  30. Lee, S. H, Ji, K. J, An Y, Ro, H. M. 2003. Soil Salinity and Vegetation Distribution at four Tidal Reclamation Project Areas Korean J. Environ. Agri. 22(2): 79-86 https://doi.org/10.5338/KJEA.2003.22.2.079
  31. Kim, C. S. 1983. Distribution of halophyte community. Nature conservation 41: 31-36
  32. Armstrong, A. C. 1986. On the fractal dimension of some transient soil properties. Soil. Sci. Soc. Am. J. 37: 641-652 https://doi.org/10.1111/j.1365-2389.1986.tb00393