DOI QR코드

DOI QR Code

Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells

결정성 탄소의 산처리가 고분자연료전지의 성능과 내구성에 미치는 영향 평가

  • Oh, Hyung-Suk (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Han, Hak-Soo (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Han-Sung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
  • 오형석 (연세대학교 화공생명공학과) ;
  • 한학수 (연세대학교 화공생명공학과) ;
  • 김한성 (연세대학교 화공생명공학과)
  • Published : 2009.05.30

Abstract

Pt catalyst was adsorbed on Carbon nanofiber (CNF) by modified polyol method after acid treatment of the carbon support with $HNO_3$ and $H_{2}SO_{4}$. As the time for acid treatment increases, more oxygen functional groups on carbon surface were produced which improve the loading amount and dispersion of Pt catalyst on carbon supports. In order to inspect the effect of CNF acid treatment time on electrochemical corrosion, constant potential of 1.4 V was applied to a single cell for 30 min and the amount of $CO_2$ emitted was monitored with on-line mass spectrometry. According to the results of our experiment, more $CO_2$ was produced with Pt/ oxidized-CNF catalyst in compared to that with unoxidized-CNF. Increasing acid treatment time also induces the more $CO_2$ emission. Besides, performance degradation after corrosion test expanded with severer carbon corrosion. From the observed results, it can be concluded that the acid treatment of CNF is beneficial to catalyst loading, but it also is a significant factor declining the fuel cell durability by accelerating electrochemical oxidation of carbon support.

References

  1. T. W. Odom, J. L. Clary, P. Kim, and C. M. LiLieber, 'Atomic structure and electronic properties of singlewalled carbon nanotubes' Nature, 391, 62 (1998) https://doi.org/10.1038/34145
  2. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, J. F. P. Brooks, S. Washburn, and R. Superfine, 'Bending and buckling of carbon nanotubes under large strain' Nature, 389, 582 (1997) https://doi.org/10.1038/39282
  3. T. Gennett, B. J. Landi, J. M. Elich, K. M. Jones, J. L. Alleman, P. Lamarre, R. S. Morris, R. P. Raffaelle, and M. J. Heben, 'Fuel Cell application of nanotube-metal supported catalysts' J. Mater. Res. Soc. Symp. Proc., 756, 379 (2003)
  4. P. Serp, M. Corrias, and P. Kalck, 'Carbon nanotubes and nanofibers in catalysis' Appl. Catal. A, 253, 337 (2003) https://doi.org/10.1016/S0926-860X(03)00549-0
  5. E. Antolini, 'Carbon supports for low-temperature fuel cell catalysts' Appl. Catal. B, 88, 1 (2009) https://doi.org/10.1016/j.apcatb.2008.09.030
  6. M. Carmo, V. A. Paganin, J. M. Rosolen, and E. R. Gonzalez, 'Alternative supports for the preparation of catalysts for low-temperature fuel cells : the use of carbon nanotubes' J. Power Sources, 142, 169 (2005) https://doi.org/10.1016/j.jpowsour.2004.10.023
  7. X. Wang, M. Waje, and Y. Yan, 'CNT-Based Electrodes with High Efficiency for PEMFCs' Electrochem. Solid-State Lett., 8, A42 (2005) https://doi.org/10.1149/1.1830397
  8. N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, 'Performance of polymer electrolyte membrane fuel cells with crbon nanotubes as oxygen reduction catalyst support material' J. Power Sources, 140, 250 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.042
  9. D. Villers, S. H. Sun, and A. M. Serventi, J. P. Dodelet, S. Dsilets, 'Characterization of Pt Nanoparticles Deposited onto Carbon Nanotubes Grown on Carbon Paper and Evaluation of This Electrode for the Reduction of Oxygen' J. Phys. Chem. B, 110, 25916 (2006) https://doi.org/10.1021/jp065923g
  10. Y. Shao, G. Yin, and Y Gao, 'Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell' J. Power Sources, 171, 558 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.004
  11. Y. Siyu, H. Miho, and H. Ping, 'PEM Fuel Cell Catalysts: The Improtance of Catalyst Support' ECS Transactions, 16, 2101 (2008) https://doi.org/10.1149/1.2982050
  12. L. Li and Y. Xing, 'Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations' J. Electrochem. Soc., 153, A1823 (2006) https://doi.org/10.1149/1.2234659
  13. K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, and H. S. Kim, 'Studies on the anode catalysts of carbon nanotube for DMFC' Electrochim. Acta, 50, 791 (2004) https://doi.org/10.1016/j.electacta.2004.01.115
  14. T. W. Ebbesen, H. Hiura, H. Fujita, and K. Tanigaki, 'Purification of nanotubes' Nature, 367, 519 (1994) https://doi.org/10.1038/367519a0
  15. H. Hiura, T. W. Ebbesen, and K. Tanigaki, 'Opening and purification of carbon nanotubes in high yields' Adv. Mater., 7, 275 (1995) https://doi.org/10.1002/adma.19950070304
  16. T. G. Ros, A. J. Dillen, J. W. Geus, and D. C. Koningsberger, 'Surface Oxidation of Carbon Nanofibres' Chem. Eur. J., 8, No. 5, 1151 (2002) https://doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#
  17. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Roa, P. C. Eklund, 'Solution properties of single-walled carbon nanotubes' Science, 282, 95 (1998) https://doi.org/10.1126/science.282.5386.95
  18. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, 'Fullerene pipes' Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  19. B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, 'The decoration of carbon nanotubes by metal nanoparticles' J. Phys. D, 29, 3173 (1996) https://doi.org/10.1088/0022-3727/29/12/037
  20. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, 'Novel experiments with carbon nanotubes : Opening, filling, closing and functionalizing nanotubes' J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996) https://doi.org/10.1088/0953-4075/29/21/006
  21. K. H. Lim, H. S. Oh, S. E. Jang, Y. J. Ko, H. J. Kim, H. S. Kim, 'Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells' J. Power Sources, In Press (2009) https://doi.org/10.1016/j.jpowsour.2009.04.006
  22. H. S. Oh, J. G. Oh, S. J. Haam, K. Arunabha, B. W. Roh, I. C. Hwang, H. S. Kim, 'On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells' Electrochem. Commun., 10, 1048 (2008) https://doi.org/10.1016/j.elecom.2008.05.006
  23. H. S. Oh, J. G. Oh, and H. S. Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinumcarbon catalysts for fuel cells' J. Power Sources, 142, 169 (2008) https://doi.org/10.1016/j.jpowsour.2004.10.023
  24. K. H. Kangasniermi, D. A. Condit, and T. D. Jarvi, 'Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions' J. Electrochem. Soc., 151, E125 (2004) https://doi.org/10.1149/1.1649756
  25. J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, and T. M. Lim, 'Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors' Electrochem. Commun., 7, 249 (2005) https://doi.org/10.1016/j.elecom.2005.01.008
  26. Y. Shao, G. Yin, J. Zhang, and Y. Gao, 'Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution' ' Electrochim. Acta, 51, 5853 (2006) https://doi.org/10.1016/j.electacta.2006.03.021
  27. Y. Xing, L. Li, C. C. Chusuei, and R. V. Hull, 'Sonochemical Oxidation of Multiwalled Carbon Nanotubes' Langmuir, 21, 4185 (2005) https://doi.org/10.1021/la047268e
  28. J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao, 'Modification of the surface chemistry of activated carbons' Carbon, 37, 1379 (1999) https://doi.org/10.1016/S0008-6223(98)00333-9
  29. H. S. Oh, J. G. Oh, Y. G. Hong, and H. S. Kim, 'Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications' Electrochim Acta, 52, 7278 (2007) https://doi.org/10.1016/j.electacta.2007.05.080
  30. K. Kinoshita, Carbon, Electrochemical and Physicochemical Properities, Wiley, New York, 1998
  31. O. A. Baturina, S. R. Aubuchon, and K. J. Wynne, 'Thermal Stability in Air of Pt/C Catalysts and PEM Fuel Cell Catalyst Layers' Chem. Mater., 18, 1498 (2006) https://doi.org/10.1021/cm052660e
  32. D. A. Stevens, M. T. Hicks, G. M. Haugen, and J. R. Dahn, 'Ex Situ and In Situ Stability Studies of PEMFC Catalysts Effect of Carbon Type and Humidification on Degradation of the Carbon' J. Electrochem. Soc., 152, A2309 (2005) https://doi.org/10.1149/1.2097361
  33. D. A. Stevens and J. R. Dahn, 'Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells' Carbon, 43, 179 (2005) https://doi.org/10.1016/j.carbon.2004.09.004