DOI QR코드

DOI QR Code

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers

반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향

  • Park, Joong-Kook (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Jeong, Chan-Sung (Gyeonggi Livestock Veterinary Research Institute) ;
  • Park, Do-Yeun (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Kim, Hyun-Cheol (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Lee, Seung-Cheol (Gyeonggi Livestock Veterinary Research Institute) ;
  • Kim, Chang-Hyun (School of Animal Life and Environment Science, Hankyong National University)
  • 박중국 (한경대학교 생물환경.정보통신전문대학원) ;
  • 정찬성 (경기도 축산위생연구소) ;
  • 박도연 (한경대학교 생물환경.정보통신전문대학원) ;
  • 김현철 (한경대학교 생물환경.정보통신전문대학원) ;
  • 이승철 (경기도 축산위생연구소) ;
  • 김창현 (한경대학교 동물생명환경과학부)
  • Received : 2008.07.11
  • Accepted : 2009.02.18
  • Published : 2009.02.01

Abstract

This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

Acknowledgement

Supported by : 한경대학교

References

  1. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemist, Washington, DC.
  2. Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641-644. https://doi.org/10.4141/cjas95-096
  3. Beauchemin, K. A., Jones, S. D. M., Rode, L. M. and Sewalt, V. J. H. 1997. Effects of fibrolytic enzyme in corn or barley diets on performance and carcass characteristics of feedlot cattle. Can. J. Anim. Sci. 77:645-653. https://doi.org/10.4141/A97-050
  4. Beauchemin, K. A., Rode, L. M. and Karren, D. 1999. Use of feed enzymes in feedlot finishing diets. Can. J. Anim. Sci. 79:243-246. https://doi.org/10.4141/A98-124
  5. Bryant, M. P. and Burkey, L. A. 1953. Cultural methods and some characteristics of some of the more numberous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  6. Bryant, M. P. 1973. Nutritional requirements of predominant rumen cellulolytic bacteria. Fed. Proc. 32:1809-1813.
  7. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-132.
  8. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics. 11:1-42. https://doi.org/10.2307/3001478
  9. Dehority, B. A. and Scott, H. W. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J. Dairy Sci. 50:1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  10. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  11. Forsberg, C. W., Beveridge, T. J. and Hellistroom, A. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42:886-896.
  12. Greve, L. C., Labavitch, J. M. and Hungate, R. E. 1984. ${\alpha}-L-arabinofuranosidase$ from Ruminococcus albus 8: Purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. microbiol. 47:1135-1140.
  13. Harrison, G. A., Hemken, R. W., Dawson, K. A., Harmon, R. J. and Barker, B. K. 1988. Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial population, J. Dairy Sci. 71:2967-2975. https://doi.org/10.3168/jds.S0022-0302(88)79894-X
  14. Hristov, A. N., Basel, C. E., Melgar, A., Foley, A. E., Ropp, J. K., Hunt, C. W. and Tricarico, J. M. 2008. Effect of exogenous polysaccharide-degrading enzyme preparations on ruminal fermentation and digestibility of nutrients in dairy cows. Anim. Feed Sci. Technol. 145: 182-193. https://doi.org/10.1016/j.anifeedsci.2007.05.051
  15. Hristov, A. N., MCAllister, T. A. and Cheng, K. J. 2000. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 78:477-487. https://doi.org/10.2527/2000.782477x
  16. Hungate, R. E. 1966. The rumen and its microbes. Academic Press Inc. New York.
  17. Kudo, H., Cheng, K. J. and Costerton, J. W. 1987a. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33:244-248. https://doi.org/10.1139/m87-041
  18. Kudo, H., Cheng, K. J. and Costerton, J. W. 1987b. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic bacteria from cellulose fibers. Can. J. Microbiol. 33:267-272. https://doi.org/10.1139/m87-045
  19. Kung, L., Jr., Treacher, R. J., Nauman, G. A., Smagala, A. M., Endres, K. M. and Cohen, M. A. 2000. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J. Dairy Sci. 83:115-122. https://doi.org/10.3168/jds.S0022-0302(00)74862-4
  20. Kung, L., Jr., Cohen, M. A., Rode, L. M. and Treacher, R. J. 2002. The effect of fibrolytic enzymes sprayed onto forages and fed in a total mixed ratio to lactating dairy cows. J. Dairy Sci. 85:2396-2402. https://doi.org/10.3168/jds.S0022-0302(02)74321-X
  21. McAllister, T. A., Oosting, S. J., Popp, J. D., Mir, Z., Yanke, L. J., Hristov, A. N., Treacher, R. J. and Cheng, K. -J. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. 79:353-360. https://doi.org/10.4141/A98-099
  22. McDermid, K., Mackenzie, C. R. and Forsberg, C. W. 1990. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 127-132.
  23. Muck, R. E., O’kiely, P. and Moran, J. 1990. Low pH grass silage. Teagasc Anim. Prod. Res. Rep., 1988-1989, pp. 77.
  24. Pettipher, G. L. and Latham, M. J. 1979. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 110:29-38. https://doi.org/10.1099/00221287-110-1-29
  25. Phipps, R. H., Wilkinson, J. I. D., Jonker, L. J., Tarrant, M., Jones, A. K. and Hodge, A. 2000. Effect of monensin on milk production of Holstein-Friesian dairy cow. J. Dairy Sci. 83:2789-2794. https://doi.org/10.3168/jds.S0022-0302(00)75176-9
  26. Santra, A., Chaturvedi, O. H., Tripathi, M. K., Kumar, R. and Karim, S. A. 2003. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research 47:203-212. https://doi.org/10.1016/S0921-4488(02)00241-9
  27. SAS. 2003. $SAS/STAT^{\circleR}$ Software for PC. SAS Institute Inc., Cary, NC, USA.
  28. Symanowski, J. T., Green, H. B., Wagner, J. R., Wilkinson, J. I. D., Davies, J. S., Hirsmstedt, M. R., Allen, M. S., Block, E., Brennan, J. J., Head, H. H., Kennelly, J. J., Nielsen, J. N., Nocek, J. E., Van Der List, J. J. and Whitlow, L. W. 1999. Milk production and efficiency of cows fed monensin. J. Dairy Sci. 82 (Suppl 1):171.(Abstr.)
  29. Van Soest, P. J., Roberts, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Wang, Y., Alexander, T. W. and McAllister, T. A. 2004. In vitro effects of Monensin and Tween 80 on ruminal fermentation of barley grain:barley silage-based diets for beef cattle. Animal Feed Sci. and Tech. 116:197-209. https://doi.org/10.1016/j.anifeedsci.2004.06.006
  31. Williams, A. G. and Coleman. 1992. The Rumen Protozoa Springer-Verlag Inc. New York, NY. pp. 441.
  32. William, P. E. V. and Newbold, C. J. 1990. Rumen probiosis: The effects of novel microorganism on rumen fermentation and ruminant productivity. In: Haresign W. and Cole, F. J. A (Ed.) Recent Advances in Animal Nutrition. Butterworths, London. pp. 211-217.
  33. Windham, W. R. and Akin, D. E. 1984. Rumen fungi and forage fiber degradation. Appl Environ Microbial. 48:473-476.
  34. 농림부.농촌진흥청 축산기술연구소, 2002, 한국사양표준(젖소). 상록사.
  35. 이기영. 2006. 반추위로부터 분리된 혐기성 섬유소분해 박테리아의 혼합배양에 의한 발효 특성에 관한 연구. 한경대학교 석사학위 논문.
  36. 이성훈, 서인준. 2005. 반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향. 한국동물자원과학회지 47:789-804. https://doi.org/10.5187/JAST.2005.47.5.789

Cited by

  1. Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in Sheep vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0102-8
  2. Effects of Supplemental Level and Period of Fibrolytic Enzyme on Feed Efficiency and Carcass Characteristics of Hanwoo Steers in Fattening Phase vol.48, pp.4, 2014, https://doi.org/10.14397/jals.2014.48.4.175