Screening and Isolation of Chitinase and Chitosanase Producing Microbes from the Feces of Korean Native Calves Medicated DFMs Including Chitin

키틴함유 DFMs 급여 한우송아지 분변내 키틴 및 키토산분해효소 생산 미생물 선발 및 동정

  • Kim, Tae-Il (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Kwon, Eung-Gi (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Hyeong-Cheol (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Cho, Young-Moo (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Park, Byung-Ki (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Lee, Won-Kyu (Han Dong Co. Ltd) ;
  • Im, Seok-Ki (Hanwoo Experiment Station, National Institute of Animal Science, RDA)
  • 김태일 (농촌진흥청 국립축산과학원) ;
  • 권응기 (농촌진흥청 국립축산과학원) ;
  • 김형철 (농촌진흥청 국립축산과학원) ;
  • 조영무 (농촌진흥청 국립축산과학원) ;
  • 박병기 (농촌진흥청 국립축산과학원) ;
  • 이원규 ((주)한동) ;
  • 임석기 (농촌진흥청 국립축산과학원)
  • Received : 2009.09.04
  • Accepted : 2009.10.20
  • Published : 2009.10.01


This study was carried out to screen and identify the chitinase and chitosanase producing microorganisms from the feces of calves medicated DFM sincluding chitin in order to do the immune fortification of Korean Native calves. Ten isolates were grown in the medium containing chitin and chitosan that had more than $10^5$ cfu/g in feces. Among these 10 strains, 2 strains (HANDI 110 and HANDI 309) had the chitinase activities and 2 strains (HANWOO and HANYOO) had the chitosanase activities in calves' feces. They showed no reaction in hemolysis tests by utilizing chitin and chitosan. The results from morphological, physicochemical and genetical identification indicated the HANDI 110 as a strain of Escherichia fergusonii, HANDI 309 was identified as a strain of Acinetobacter parvus, HANWOO was identified as a strain of Comamonas koreensis, and HANYOO as a strain of Chryseobacterium indologenes.


Korean Native Calves;Chtinase;Chitosanase;Microbes;Feces;DFMs


  1. Benson, H. J. 1990. Identification of unknown bacteria. In Microbiological application, 5th ed. W. C. Brown Publishers. USA, pp 146-173.
  2. Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C. and Shin, Y. C., 2004. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl. Environ. Microbiol. 70(8):4522-4531.
  3. Facklam, R. and Wilkinson, H. W. 1981. The family Streptococcaceae. In M. P. Starr, H. Stolp, H. G. Truper, A. Balows and H. G,. Schlegel (Eds.) The prokaryotes. Springer-Verlag. Berlin.pp. 1572.
  4. Hayashi, K., Sato, S., Takano, R., Tsujibo, H., Orikoshi, H., Imada, C., Okami, Y., Inamori, Y. and Hara, S. 1995. Identification of the positions of disulfide bonds of chitinase from a marine bacterium, Alteromonas sp. Strain O-7. Biosci. Biotech. Biochem. 59:1981-1982.
  5. Harman, G. E., Hayes, M., Lorito, Broadway, R. M., Dipietro, A., Peterbauer, C. and Tronsmo, A. 1993. Chitinolytic enzymes of Trichoderma harzianum; Purification of chitobiosidase and endochitinase. Phytopathology 83:313-318.
  6. Hirano, S. Chitin and Chitosan. Essex: Elsevier; 1989. Production and Application of Chitin and Chitosan in Japan; pp. 37-43.
  7. Holt, J. G., Krieg N. R., Sneath, P. H. A., Staley, J. T. and Williams, S. T. 1994. Bergey’s Manual of determinative bacteriology 9th Eds., Williams & Wilkins, Baltimore.
  8. Hsu, S. C. and Lockwood, L. 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water soil. Appl. Microbiol. 29, 422-426.
  9. Juni, E. 1984. Genus III. Acinetobacter, p. 303-307. In N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore.
  10. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H. and Kaneko, T. 1984. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric. Biol. Chem. 48:3169-3172.
  11. Krieg N. R. and Holt, J. G. 1984. Bergey’s Manual of Systematic bacteriology, Vol 1 Eds., Williams & Wilkins, Baltimore.
  12. Marmur, J. and Doty, P. 1962. Determination of base composition of DNA from its thermal denaturation temperature. J. Mol.Biol. 5: 109-118.
  13. Miller, L. 1987. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 425-431.
  14. Mitsutomi, M., Hata, T., Kuwahara, T. 1995. Purification and characterization of novel chitinases from Stereptomyces griseus HUT 6037. J. Ferment. Bioeng. 80:153-158.
  15. Mollogy, C. and Burke, B. 1997. Expression and secretion of Janthinobacterium lividum chitinase in Saccharomyces cerevisiae. Biotech. Lett. 19:1161-1164.
  16. Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M. and Moriguchi, M. 1998. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl. Environ. Microbiol. 64: 3397-3402.
  17. Shimosaka, M., Nogawa, M., Wang, X. Y., Kumehara, M. and Okazaki, M. 1995. Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microbiol. 61:438-442.
  18. Takayanagi, T., Ajisaka, K., Tabiguchi, T. and shimakara, K. 1991. Isolation and characterization of thermostable chitinase from Bacillus licheniformis X-7u. Biochim. Biophys. Acta. 1078, 410-414.
  19. Tamaoka, J. and Komagata, K. 1984. Determination of DNA base composition by reverse-phase high performance liquid chromatography. FEMS Microbio. Lett 25:125-128.
  20. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalies and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
  21. Vipul G., Pranav V. and Chatpar, H. S. 2005. Activity staning method of chitinase on chitin agar plate through polyacrylamide gel electrophoresis. African J. of Biotechnology 4(1):87-90.
  22. Yabuki, M., Hirano, M., Ando, A., Fujii, T. and Amemiya, Y. 1987. Isolation and characterization of a chitosan degrading bacterium and formation of chitosanase by the isolate. Tech. Bull. Fac. Hort. Chiba Univ. 39, 23-27.
  23. Yoon, J. H., Lee, S. T. and Park, Y. H. 1996. Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48, 187-194.
  24. Zikakis, J. P. 1984. Chitinase from soybean seeds; Purification and some properties of the enzyme system Wadworth, S. A., J. P. Zikakis. J. Agric. Food Chem. 32:1284-1288.
  25. Zhu, X. -F., Wu, X. -Y. and Dai, Y. 2003. Fermentation condition and properties of chitosanase from Acinetobacter sp. C-17. Biosci. Biotechnol. Biochem. 67, 284-290.
  26. Zhu, X.-F., Ying Zhou, and Jun-li Feng. 2007. Analysis of both chitinase and chitosanase produced by Sphingomonas sp. CJ-5. J Zhejiang Univ Sci B. 8(11):831-838.
  27. 강신욱, 정만재. 1999. Pseudomonas uesicularis KW-15가 생산하는 Chitinase의 정제. 한국키틴키토산학회지 4(3):132-136.
  28. 박서기, 이효연, 김기청. 1995. 토양전염성 식물병원균에 대한 Chitin 분해세균들의 길항효과. 한국식물병리학회지 11(1):47-52.
  29. 정의준, 이용현. 1995. Chitooligosaccharides생산에 적합한 Chitinase를 분비하는 균주의 선별, Chitinase의 분리정제 및 반응특성. 한국산업미생물학회지. 23(2):187-196.

Cited by

  1. Novel Acinetobacter parvus HANDI 309 microbial biomass for the production of N-acetyl-β-d-glucosamine (GlcNAc) using swollen chitin substrate in submerged fermentation vol.10, pp.1, 2017,
  2. Effects of Synbiotic Product Supplementation on Immune System of Korean Native Calves During the Suckling Periods vol.48, pp.5, 2014,