Estimation of Genetic Parameter for Linear Type Traits in Holstein Dairy Cattle in Korea

Holstein종 젖소의 선형심사형질에 대한 유전모수추정

  • Lee, Ki-Hwan (National Institute of Animal Science, R.D.A.) ;
  • Sang, Byung-Chan (Dept. of Dairy Science & Industry, Cheongnam National University) ;
  • Nam, Myoung-Soo (Dept. of Dairy Science & Industry, Cheongnam National University) ;
  • Do, Chang-Hee (Dept. of Dairy Science & Industry, Cheongnam National University) ;
  • Choi, Jae-Gwan (National Institute of Animal Science, R.D.A.) ;
  • Cho, Kawng-Hyun (National Institute of Animal Science, R.D.A.)
  • 이기환 (농촌진흥청 국립축산과학원) ;
  • 상병찬 (충남대학교 낙농산업과학과) ;
  • 남명수 (충남대학교 낙농산업과학과) ;
  • 도창희 (충남대학교 낙농산업과학과) ;
  • 최재관 (농촌진흥청 국립축산과학원) ;
  • 조광현 (농촌진흥청 국립축산과학원)
  • Received : 2009.08.04
  • Accepted : 2009.10.20
  • Published : 2009.10.01


This study utilized 332,625 records of linear type scores consisting for 15 primary traits, 22,175 final score and 84,612 pedigree information of 22,175 Holstein cows from 1993 to 2007 in Korea to estimate genetic parameters for 16 type traits. Genetic and error (co)variances between two traits selected from 16 traits were estimated using bi-trait pairwise analyses with DFREML package. The estimated heritabilities for stature (ST), strength (STR), body depth (BD), dairy form (DF), rump angle (RA), thurl width (TW), rear legs side view (RLSV), foot angle (FA), fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), front teat placement (FTP), front teat length (FTL) and final score (FS) were 0.31, 0.21, 0.25, 0.10, 0.29, 0.19, 0.09, 0.06, 0.12, 0.13, 0.12, 0.08, 0.26, 0.20, 0.28 and 0.15, respectively. ST had the highest positive genetic correlation with BD (0.90), while RLSV had the highest negative genetic correlation with FA (-0.56). RA had negative genetic correlation with most udder traits (-0.17~-0.02). Especially, RUW had the higher positive genetic correlation with STR (0.60), BD (0.62), and TW (0.49), however, UD had the higher negative genetic correlation with STR (-0.40) and BD (-0.40). FTL had negative genetic correlation with FUA, RUH, RUW, UC and UD. FS had positive genetic correlation with UC, UD and FTP (0.12, 0.18 and 0.20). However, additional research is needed on the use of these parameters in the genetic evaluation because estimated genetic and error variance-covariance matrices were not positive definite.


Linear type trait;Genetic parameter;Holstein cow


  1. Boldman, K. G. and Famula, T. R. 1985. Association of sire dystocia transmitting ability with progeny linear type traits in Holsteins. J. Dairy Sci. 68:2052-2057.
  2. Boldman, K. G. and Van Vleck, L. D. 1991. Derivative-Free restricted maximum likelihood estimation in animal models with a sparse matrix solver. J. Dairy Sci. 74:4337-4343.
  3. Boldman, K. G., Freeman, A. E., Freeman., Harris, B. L. and Kuck, A. L. 1992. Prediction of sire transmitting abilities for herd life from transmitting abilities for linear type traits. J. Dairy Sci. 75:552-563.
  4. DeGroot, B. J., Keown, J. F., Van Vleck, L. D. and Marotz, E. L. 2002. Genetic parameters and responses of linear type, yield traits, and somatic cell scores to divergent selection for predicted transmitting ability for type in Holsteins. J. Dairy Sci. 85:1578-1585.
  5. Foster, W. W., Freeman, A. E., Berger, P. J. and Kuck, A. 1988. Linear type trait analysis with genetic parameter estimation. J. Dairy Sci. 71:223-231.
  6. Foster, W. W., Freeman, A. E., Berger, P. J. and Kuck, A. 1989. Association of type traits scored linearly with production and herdlife of Holsteins. J. Dairy Sci. 72:2651-2664.
  7. Harris, B. L., Freeman, A. E. and Metzger, E. 1992. Genetic and phenotypic parameters for type and production in Guernsey dairy cows1. J. Dairy Sci. 75:1147.
  8. Hayes, A. E. and Mao, I. L. 1987. Effect of parity, age and stage of lactation at classification on linear type scores of Holstein cattle. J. Dairy Sci. 70:1898.
  9. Meyer, K. 1987. Restricted Maximum Likelihood(REML) programs for the analysis of animal breeding data. Program notes prepared for a workshop in Orange, NSW, March 2-6, Mimeo. 55.
  10. Meyer, K. 1988. Estimation of variance components for Individual Animal Models II. Multivariate analyses. Genet. Sel. Evol. (submitted)
  11. Misztal, I., Lawlor, T. J. and Short, T. H. 1992. Multiple-trait estimation of variance components of yield and type traits using an animal model. J. Dairy Sci. 75:544-551.
  12. Short, T. H., Lawlor, T. J. JR. and Lee, K. L. 1991. Genetic parameters for three experimental linear type traits. J. Dairy Sci. 74:2020-2025.
  13. Short, T. H. and Lawlor. 1992a. Revised udder composite can increase longevity. Holstein world p. 44.
  14. Short, T. H. and Lawlor. 1992b. Genetic parameters of conformation traits, milk yield, and herd life in Holsteins. J. Dairy Sci. 75:1987-1998.
  15. Tsuruta, S., Misztal, I. and Lawlor. 2005. Changing definition of productive life in US Holsteins: Effect on genetic correlations. J. Dairy Sci. 88:1156-1165.
  16. Vanraden, P. M., Jensen, E. L., Lawlor, T. J. and Funk, D. A. 1990. Prediction of transmitting abilities for Holstein type traits. J. Dairy Sci. 73:191-197.
  17. Vollema, ANT. R. and Groen, AB. F. 1997. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle population. J. Dairy Sci. 80:3006-3014.
  18. Weigel, D. J., Cassell, B. G. and Pearson, R. E. 1997. Prediction of transmitting abilities for productive life and lifetime profitability from production, somatic cell count, and type traits in milk markets for fluid milk and cheese. J. Dairy Sci. 80:1398-1405.
  19. 김시동, 박병호, 서강석, 윤호백, 조광현, 최재관. 2005. 동물육종을 위한 통계패키지 사용설명서 III. DFREML. 농촌진흥청 국립축산과학원.
  20. 이광전, 박경도 조주현, 김경남. 1996. 홀스타인 젖소의 체형형질과 생산형질들에 대한 유전모수 추정. 한국축산학회지.38(5):455.
  21. 이득환, 김은길. 2006. Holstein 젖소의 선형심사형질과 등급 형질에 대한 환경효과 분석. 한국동물자원과학회지. 48(6):767-776.
  22. 한국종축개량협회. 2006. 2006년도 젖소 등록 및 심사기술. pp29-49.