Diagnostic system development for state monitoring of induction motor and oil level in press process system

프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발

  • 이인수 (경북대학교 이공대학 산업전자전기공학부)
  • Received : 2009.08.26
  • Accepted : 2009.10.15
  • Published : 2009.10.25


In this paper, a fault diagnosis method is proposed to detect and classifies faults that occur in press process line. An oil level automatic monitoring method is also presented to detect oil level. The FFT(fast fourier transform) frequency analysis and ART2 NN(adaptive resonance theory 2 neural network) with uneven vigilance parameters are used to achieve fault diagnosis in proposing method, and GUI(graphical user interface) program for fault diagnosis and oil level automatic monitoring using LabVIEW is produced and fault diagnosis was done. The experiment results demonstrate the effectiveness of the proposed fault diagnosis method of induction motors and oil level automatic monitor system.


  1. J. Wagner and R. Shoureshi, 'A failure isolation strategy for thermofluid system diagnostics,' ASME J. Eng. for Industry, vol. 115, pp. 459-465, 1993
  2. R. Isermann, 'Process fault detection based on modeling and estimation methods-a survey,' Automatica, vol. 20, no. 4, pp. 387-404, 1984
  3. M. M. Polycarpou and A. T. Vemuri, 'Learning methodology for failure detection and accommodation,' IEEE Contr. Syst. Mag., pp. 16-24, 1995
  4. T. Sorsa, H. N. Koivo and H. Koivisto, 'Neural networks in process fault diagnosis,' IEEE Trans. Syst., Man and Cybern., vol. 21, no. 4, pp. 815-825, 1991
  5. A. Srinivasan and C. Batur, 'Hopfield/ART-1 neural network-based fault detection and isolation,' IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 890-899, 1994
  6. 이인수, 신필재, 전기준, 'ART2 신경회로망을 이용한 선형 시스템의 다중고장진단,' 제어.자동화.시스템공학회 논문지, 제3권, 제3호, pp. 244-251, 1997
  7. P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines, Oxford Science Publication, 1993
  8. B. Li, M. Y. Chow, Y. Tipsuwan and J. C. Hung, 'Neural-network-based motor rolling bearing fault diagnosis,' IEEE Trans. Industrial Electronics, vol. 47, no. 5, pp. 1060-1069, 2000
  9. In Soo Lee, Soo Young Ha, 'Fault detection and isolation of induction motors using frequency analysis and ART-2 neural network,' HCI International Conference, pp. 864-868, San Diego, USA, 2009
  10. R. R. Schoen, T. G. Habetler, F. Kamran and R. G. Bartheld, 'Motor bearing damage detection using stator current monitoring,' IEEE Trans. Industry Application, vol. 31, no. 6, pp. 1274-1279, 1995
  11. R. R. Schoen, B. K. Lin, T. G. Habetler, J. H. Schlag and S. Farag, 'An unsupervised, on-line system for induction motor fault detection using stator current monitoring,' IEEE Trans. Industry Application, vol. 31, no. 6, pp. 1280-1286, 1995
  12. Z. Ye, B. Wu and A. Sadehian, 'Current signature analysis of induction motor mechanical faults by wavelet packet decomposition,' IEEE Trans. Industrial Electronics, vol. 50, no. 6, pp. 1217-1228, 2003
  13. H. Calis and A. Cakir, 'Experimental study for sensorless broken bar detection in induction motors,' Energy Conversion and Management, vol. 49. pp. 854-862, 2008
  14. S. Y. Kung, Digital Neural Networks, Prentice Hall, 1993