Effect on the Concentration of Glucose and Sucrose on the Hydrogen Production using by the Facultative Anaerobic Hydrogen Producing Bacterium Rhodopseudomonas sp. MeL 6-2

통성혐기성 수소생산균주 Rhodopseudomonas sp. MeL 6-2를 이용한 수소생산효율에 미치는 포도당 및 자당 농도의 영향

  • Lee, Eun-Young (Department of Environmental Engineering, University of Suwon)
  • 이은영 (수원대학교 환경공학과)
  • Received : 2009.04.04
  • Accepted : 2009.05.15
  • Published : 2009.06.28

Abstract

Hydrogen producing bacterium, strain MeL 6-2 was isolated from the sludge of the factory areas in Anyang through the acclimation in basal salt medium (BSM) supplemented with 10 g/L of sucrose. Isolated strain MeL 6-2 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. An aerobically grown pure culture isolated from enriched culture was analyzed by 16S rDNA sequencing and identified as Rhodopseudomonas sp. MeL 6-2. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to $4.2\;mmol-H_2{\cdot}L^{-1}{\cdot}h^{-1}$ at 10 g/L, and $60\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$, but decreased slightly as the concentration increased to 12 g/L. The hydrogen production yield was maintained over a range from 2.6 to $3.1\;mol-H_2{\cdot}mol-glucose^{-1}$. When sucrose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to $163\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$ and to $4.5\;mol-H_2{\cdot}mol-sucrose^{-1}$, respectively.

Keywords

Bio-hydrogen;facultative anaerobes;glucose;sucrose

References

  1. L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres, Y. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood. 2003. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotech. 22: 55-61 https://doi.org/10.1038/nbt923
  2. Herbert, D., P. J. Philipps, and R. E. Strange. 1971. Carbohydrate analysis, Methods Enzymol 5B: 265-277
  3. Ishikawa, M., S, Yamamura, Y. Takamura, K. Sode, E. Tamiya, and M. Tomiyama. 2006. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system, Int. J. Hydrogen Energy 31: 1484-1489 https://doi.org/10.1016/j.ijhydene.2006.06.014
  4. Kumar, K. and D. Das. 2000. Enhancement of hydrogen production by Enerobacter cloacae IIT-BT 08. Process Biochem. 35: 589-593 https://doi.org/10.1016/S0032-9592(99)00109-0
  5. Levin, D. B., R. Islam, N. Cicek, and R. Sparling. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Process Biochem. 31: 1496-1503 https://doi.org/10.1016/j.ijhydene.2006.06.015
  6. Morimoto, M. and M. Atsuko. 2004. Biological production of hydrogen from glucose by natural anaerobic microflora, Int. J. Hydrogen Energy 29: 709-713 https://doi.org/10.1016/j.ijhydene.2003.09.009
  7. Ogino, H. T. Miura, K. Ishimi, M. Seki, and H. Yoshida. 2005. Hydrogen production from glucose by anaerobes. Biotechnol Prog. 21: 1786-1788 https://doi.org/10.1021/bp050224r
  8. Tao, Y., Y. Chen, Y. Wu, Y. He, and Z. Zhou. 2007. High hydrogen yield from a two-step process of dark- and photofermentation of sucrose. Int. J. Hydrogen Energ. 32: 200-206 https://doi.org/10.1016/j.ijhydene.2006.06.034
  9. Thompson, J. D., D. G. Higgin. and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  10. Momirlan, M. and T. Veziroglu. 2002. Current status of hydrogen energy, Renew. Sust. Energ. Rev. 6: 141-179 https://doi.org/10.1016/S1364-0321(02)00004-7
  11. Liu, B.-F., N.-Q. Ren, De-F. Xing, J. Ding, G.-X. Zheng, W.-Q. Guo, J.-F. Xu, and G.-J. Xie. 2009. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Biores. Technol. 100: 2719-2723 https://doi.org/10.1016/j.biortech.2008.12.020
  12. Lo, Y. C., W. M. Chen, C. H. Hung, S. D. Chen, J. S. Chang. 2008. Dark H2 fermentation from sucrose and xylose using $H_{2}$-producing indigenous bacteria: feasibility and kinetic studies. Water Res. 42: 827-842 https://doi.org/10.1016/j.watres.2007.08.023
  13. Yokoi, H. and R. Maki. 2002. Microbial production of hydrogen from starch-manufacturing wastes, Biomass and Bioenergy 22: 389-395 https://doi.org/10.1016/S0961-9534(02)00014-4
  14. Chen, X., Y. Sun and Z. Xiu. 2006. Stoichiometric analysis of biological process for biohydrogen from glucose, Int. J. Hydrogen Energy 31: 539-549 https://doi.org/10.1016/j.ijhydene.2005.03.013
  15. Korea Ministry of Environment, 2006, Comprehensive plan of the organic wastes of Korea
  16. Chen, C. Y., M. H. Yang, K. L. Yeh, C. H. Liu, and J.S. Chang. 2008b. Bio-hydrogen production using sequential two-stage dark and photo fermentation processes. Int. J. Hydrogen Energ. doi:1.1016/j.ijhydene. 2008.06.055 https://doi.org/10.1016/j.ijhydene.2008.06.055
  17. Evvyemie, D., K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrifucum M-21. J. Biosci. Bioeng. 91: 339-343 https://doi.org/10.1263/jbb.91.339
  18. Redwood, M. D. and L. E. Macaskie. 2006. A two-stage, two-organism process for biohydrogen from glucose, Int. J. Hydrogen Energy 31: 1514-1521 https://doi.org/10.1016/j.ijhydene.2006.06.018
  19. Jo, J. H., D. S. Lee, D. Park, W. S. Choe, and J. M. Park. 2008. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogens using statistical methods, Bioresour. Technol. 99: 2061-2066 https://doi.org/10.1016/j.biortech.2007.04.027
  20. Chin, H. L., Z. S. Chen, and C. P. Chou. 2003. Fedbatch operation using Clostridium acetobutyricum suspension cultures as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 19: 383-388 https://doi.org/10.1021/bp0200604
  21. Fabiano, B. and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes, Int. J. Hydrogen Energy 27: 149-156 https://doi.org/10.1016/S0360-3199(01)00102-1
  22. Collet, C., N. Alder, J. P. Schwitzguebel, and P. Peringer. 2004. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy. 29: 1479-1485 https://doi.org/10.1016/j.ijhydene.2004.02.009
  23. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  24. Chen, C. Y., W. B. Lu, C. H. Liu, and J. S. Chang. 2008a. Improved photorophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour. Technol. 99: 3609-3616 https://doi.org/10.1016/j.biortech.2007.07.037
  25. Kumar, K. and D. Das. 2001. Electron microscopy of hydrogen producing immobilized E. cloacae IIT-BT 08 on natural polymers, (2001), Int. J. of Hydrogen Energy 26: 1155-1163 https://doi.org/10.1016/S0360-3199(01)00061-1
  26. Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. Hydrogen production by continous cultures of Escherichia coli under different nutrient regimes. Int. J. Hydrogen Energy 33: 1465-1470
  27. Momirlan, M. and T. Veziroglu. 1999. Recent directions of world hydrogen production, Renew. Sust. Energ. Rev. 3: 219-231 https://doi.org/10.1016/S1364-0321(98)00017-3
  28. Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment.Bioeng. 80: 571-574 https://doi.org/10.1016/0922-338X(96)87733-6
  29. Yun, Y.-S., S.-K. In, J.-S. Baek, S. H. Park, Y.-K. Oh, and M.-S. Kim. 2005. Two-stage biological hydrogen production by Rhodopseudomonas palustris P4. Trans. of the Kor. Hydro. and New Ener. Soc. 16: 315-323
  30. Chen, S .D., D. S. Sheu, W. M. Chen, Y. C. Lo, T. I. Huang, C. Y. Lin. 2007. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol Prog. 23: 1312-1320 https://doi.org/10.1021/bp070187z
  31. Kim. K. H., Y. J. Choi, and E. Y. Kim. 2008. The optimization of biohydrogen production medium by dark fermentation with Enterobacter aerogenes, Kor. J. Biotechnol. Bioeng. 23: 54-58
  32. Zhang, H., M. A. Bruns, and B. E. Logan. 2006. Biological hydrogen production by Clostridium acetobutyricum in an unsaturated flow reactor. Water Res. 42: 827-842 https://doi.org/10.1016/j.watres.2007.08.023