Optimizing the Production of 5-Aminolevulinic Acid by Recombinant Escherichia coli Containing the Rhodobacter capsulatus hemA Gene

Rhodobacter capsulatus hemA 유전자 발현 대장균에 의한 5-Aminolevulinic Acid 생산의 최적화

  • 양동수 ((주)압선비씨엘) ;
  • 박문원 ((주)압선비씨엘) ;
  • 임수진 (단국대학교 동물자원학과) ;
  • 김민정 (단국대학교 동물자원학과) ;
  • 신유리 (단국대학교 동물자원학과) ;
  • 박찬수 ((주)이지바이오시스템) ;
  • 현영 ((주)이지바이오시스템) ;
  • 강대경 (단국대학교 동물자원학과)
  • Received : 2009.04.10
  • Accepted : 2009.05.11
  • Published : 2009.06.28

Abstract

Recombinant Escherichia coli BLR(DE3) harboring the hemA gene from Rhodobacter capsulatus under the control of a constitutive promoter, which we constructed previously, was used for the extracellular production of 5-aminolevulinic acid (ALA). The effects of several factors on ALA production were investigated in flask culture. ALA production by the recombinant E. coli was more efficient at $30^{\circ}C$ than $37^{\circ}C$. The glycine concentration had an important effect on cell growth. Glycine and succinic acid concentration of 5-10 and 10-20 g/L, respectively, resulted in high ALA production. In addition, the partial replacement of succinic acid by sodium glutamate increased the ALA production. The ALA production was inhibited by the presence of glucose in the medium. Using the optimal conditions, an ALA concentration of 8.2 g/L was achieved in jar fermentation without an added inducer or ALA dehydratase inhibitor; this is the highest reported concentration.

Keywords

5-Aminolevulinic acid;recombinant Escherichia coli;glycine;succinic acid;glutamate;glucose

Acknowledgement

Supported by : 지식경제부

References

  1. Avissar, Y. J. and S. I. Beale. 1989. Identification of the enzymatic basis for $\"{a}$-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171: 2919-2924 https://doi.org/10.1128/jb.171.6.2919-2924.1989
  2. Bykhovsky, V. Y., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin $B_{12}$ biosynthesis. Critical Rev. Biotechnol. 17(1): 21-37 https://doi.org/10.3109/07388559709146605
  3. Chen, Y. J., J. H. Cho, J. S. Yoo, Y. Wang, Y. Huang, I. H. Kim. 2008. Evaluation of ä-aminolevulinic acid on serum iron status, blood characteristics, egg performance and quality in laying hens. Asian-Aust. J. Anim. Sci. 21: 1355-1360 https://doi.org/10.5713/ajas.2008.70634
  4. Dempsey, W. B. 1973. Lysis of Escherichia coli by glycine is potentiated by pyridoxine starvation. J. Bacteriol. 116(1): 373-377
  5. Lee, D.-H., W.-J. Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using Dglucose. Enz. Microbial Technol. 32: 27-34 https://doi.org/10.1016/S0141-0229(02)00241-7
  6. Lo, T. C. Y., K. Rayman, and H. D. Sanwal. 1972. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J. Biol. Chem. 247(19): 6323-6331
  7. Poo, H., J. J. Song, S.-P. Hong, Y.-H. Choi, S. W. Yun, J.-H. Kim, S. C. Lee, S.-G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-aaa. Biotechnol. Lett. 24: 1185-1189 https://doi.org/10.1023/A:1016107230825
  8. Rebeiz, C. A., A. Montaxer-Zouhool, H. Hopen, and S, M. Wu. 1984. Photodynamic herbicides. I. Concepts and phenomenology. Enzyme Microb. Technol. 6: 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  9. Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17(9): 1579-1584
  10. Halpern, Y. S., A. Ecen-shoshan, and M. Artman. 1964. Effect of glucose on the utilization of succinate and the activity of tricarboxylic acid-cycle enzymes in Escherichia coli. Biochim Biophys Acta. 93: 228-236
  11. Kikuchi, G., A. Kumor, P. Talmage, and D. Shemin. 1958. The enzymatic synthesis of ä-aminolevulinic acid. J. Biol. Chem. 233: 1214-1219
  12. Mateo, R. D., J. L. Morrow, J. W. Dailey, F. Ji, S. W. Kim. 2006. Use of delta-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian-Aust. J. Anim. Sci. 1: 97-101
  13. Han, L., M. Doverskog, S. O. Enfors, and L. Häggström. 2002. Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J. Biotechnol. 92(3): 237-249 https://doi.org/10.1016/S0168-1656(01)00373-X
  14. Nam, T.-W., Y.-H. Park, H.-J. Jeong, S. Ryu, and Y.-J. Seok. 2005. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP·cAMP complex. Nucleic Acids Res. 33(21): 6712-6722 https://doi.org/10.1093/nar/gki978
  15. Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459 https://doi.org/10.1021/bp00029a001
  16. Choi, C., B.-S. Hong, H.-C. Sung, H.-S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554 https://doi.org/10.1023/A:1005520007230
  17. Fu, W., J. Lin, and P. Cen. 2008. Enhancement of 5- aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technol. 99: 4864-4870 https://doi.org/10.1016/j.biortech.2007.09.039
  18. Sasaki, K., M. Watnabe, T. Tanake, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29 https://doi.org/10.1007/s00253-001-0858-7
  19. Kang, D.-K., S. S. Kim, W.-J. Chi, S.-K. Hong, H. K. Kim and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 14(6): 1327-1332
  20. Hammets, W., K. H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116(2): 1029-1053
  21. Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5- aminolevulinic acid and its derivatives. Porphyrins 7: 342-347
  22. Qin, G., J. Lin, X. Liu, and P. Cen. 2006. Effect of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102(4): 316-322 https://doi.org/10.1263/jbb.102.316
  23. Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69(3): 470-476 https://doi.org/10.1271/bbb.69.470
  24. Chung S.-Y., K.-K. Seo, K.A. Han, S. H. Cho, K. H. Bak, and J. I. Rhee. 2004. Production and process monitoring of 5-aminolevulinic acid [ALA] by recombinant E. coli. I. Characteristics of ALA production. Kor. J. Biotech. Bioeng. 19(1): 17-26
  25. Lee, D.-H., W.-J. Jum, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong. 2004. Process strategies to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biothchnol. 14(6): 1310-1317
  26. Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
  27. Beale, S. J. and P. A. Castelfranco. 1974. The Biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$-$\delta$-aminolevulinic acid from labeled precursors in greening plant tissue. Plant Physiol. 53: 297-303 https://doi.org/10.1104/pp.53.2.297
  28. Ferreira, G. and J. Gong. 1995. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27: 151-159 https://doi.org/10.1007/BF02110030
  29. Mauzerall, D and S. Granick, 1956. The occurance and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219(11): 435-446
  30. Berg, K., P. K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B${\O}$ Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, and A. H$\phi$gset. 2005. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 218: 133-147 https://doi.org/10.1111/j.1365-2818.2005.01471.x
  31. Choi, H.-P., Y.-M. Lee, C.-W. Yun, and H.-C. Sung. 2008. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J. Microbiol. Biotechnol. 18(6): 1136-1140
  32. Takahashi, Y. 1975. Effect of glucose and cyclic Adenosine 3', 5' monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J. Biochem. 78(5): 1097-1100