Purification and Characterization of Xylanase from Bacillus sp. A-6

Bacillus sp. A-6의 Xylanase의 정제와 특성

  • Choi, Suk-Ho (Division of Animal Science and Life Resources, Sangji University)
  • 최석호 (상지대학교 동물생명자원학부)
  • Received : 2009.03.02
  • Accepted : 2009.04.16
  • Published : 2009.06.28

Abstract

A xylanase was purified from the culture supernatant of Bacillus sp. A-6 by using ultrafiltration and ion exchange chromatography on the column of SP-Sepharose using 5 mM acetate buffer, pH 5.0. The xylanase was eluted from the column at the concentration less than 0.05 M NaCl. The eluted xylanase was shown to be a single protein band in SDS-PAGE. Zymogram analysis indicated that the protein band in SDS-PAGE had the enzyme activity to hydrolyze oat spelt xylan. The molecular weights of the xylanase were 15,000 based on SDS-PAGE and 14,100 based on gel filtration chromatography. Thin layer chromatography showed that the xylanase hydrolyzed oat spelt xylan into xylobiose and high-molecular-weight xylooligosaccharides. The relative activities of the heated xylanase decreased to 80% at $40^{\circ}C$ after 7 hr and less than 40% at $60^{\circ}C$ after 1 hr.

Keywords

Xylanase;Bacillus;oat spelt xylan;purification

Acknowledgement

Supported by : Sangji University

References

  1. Adeola, O. and M. R. Bedford. 2004. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 92: 87-94 https://doi.org/10.1079/BJN20041180
  2. Biely. P. 1985. Microbial xylanolytic systems. Trends Biotechonol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  3. Collins, T., G. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Mirobiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  4. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature(London) 227: 680-685 https://doi.org/10.1038/227680a0
  5. Polizeli, M. L., A. C. Rizzatti, R. Monti, H. f. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  6. Lee, J.-H. and S. H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16: 1856-61
  7. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835 https://doi.org/10.1016/j.femsre.2004.12.001
  8. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  9. Esteben, R., J. R. Villanueva, and T. G. Villa. 1992. β-DXylanases of Bacillus circulans WL-12. Can. J. Microbiol. 28: 733-793 https://doi.org/10.1139/m82-112
  10. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  11. Okazaki, W., T. Akiba, K. Horikosh, and R. Akahoshi 1985. Purification and characterization of xylanases from an alkalophilic thermophilic Bacillus spp. Agric. Biol. Chem. 49: 2033-2039 https://doi.org/10.1271/bbb1961.49.2033
  12. Aspinali, G. O. 1959. Structural chemistry of the hemicelluloses. Adv. Carbohydr. Chem. 14: 429-468 https://doi.org/10.1016/S0096-5332(08)60228-3
  13. Graham, H., P. H. Simmins, and J. Sands. 2003. Reducing environmental pollution using animal feed enzymes. Commun. Agric. Appl. Bio. Sci. 68: 285-289
  14. Cowieson, S. J., M. Hruby, and M. Faurschou Isaksen. 2005. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 46: 717-24 https://doi.org/10.1080/00071660500392506
  15. Wang, Z. R., S. Y. Qiao, and W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84: 875-881 https://doi.org/10.1093/ps/84.6.875
  16. Honda, H., T. Kudo, and K. Horikoshi. 1985. Two types of xylanases of alkalophilc Bacillus sp. No. C-125. Can. J. Microbiol. 31: 538-542 https://doi.org/10.1139/m85-100
  17. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: Functions and Applications. Mcirobiol. Rev. 52: 305-317
  18. Ratanakhanokchal, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. Strain K-1. Appl. Environ. Microbiol. 65: 694-697
  19. Kim, K. C., S.-S. Yoo, Y.-A. Oh, and S.-J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  20. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  21. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotecchnol. 17: 39-67 https://doi.org/10.3109/07388559709146606