Effect of Amino Acids and Organic Nitrogen Sources on Cyclosporin A Fermentation by Tolypocladium inflatum

Tolypocladium inflatum을 이용한 Cyclosporin A 발효에서 아미노산과 유기질소원의 영향

  • Kim, Jeong-Keun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Lee, Byung-Kyu (Yuhan Research Institute) ;
  • Chang, Seog-Won (Bio RIC and Department of Medico-Life Science, Youngdong University) ;
  • Park, Yong-Deok (Bio RIC and Department of Medico-Life Science, Youngdong University) ;
  • Rho, Yong-Taek (Bio RIC and Department of Medico-Life Science, Youngdong University)
  • 김정근 (한국산업기술대학교 생명화학공학과) ;
  • 이병규 (유한양행 중앙연구소) ;
  • 장석원 (영동대학교 Bio RIC 및 의생명과학과) ;
  • 박용덕 (영동대학교 Bio RIC 및 의생명과학과) ;
  • 노용택 (영동대학교 Bio RIC 및 의생명과학과)
  • Received : 2008.07.30
  • Accepted : 2009.05.17
  • Published : 2009.06.28


Cyclosporin, an immunosuppressant, is a representative group of biologically active secondary metabolites produced by the fungus Tolypocladium inflatum. The amount and ratio of cyclosporin derivatives in the culture broth are an important factors for the production of cyclosporin A and the purification in the industrial process. Therefore, we studied the effect of amino acids and complex organic nitrogen sources using Tolypocladium inflatum mutants on the productivity of cyclosporin A and the ratio of cyclosporin derivatives. Overproducing mutant YHC-004 having seven times higher productivity than mother strain's could be obtained through the artificial mutation by UV irradiation. The concentration and kind of organic nitrogens and amino acids shows the profound effect on the productivity of cyclosporin A and ratio of cyclosporin derivatives. As a result, it was possible to raise the productivity and the ratio of cyclosporin A up to 3,430 mg/L and 93% respectively, but on the other hand the other cyclosporin derivatives decreased less than 2% in the culture broth.


Cyclosporin A;immunosuppressant;Tolypocladium inflatum;nitrogen source


Supported by : 영동대학교


  1. Borel, J. F. 1986. Cyclosporin and its future. pp 9-18. In Cyclosporins, Progress in allergy, vol. 38, Karger, Basel
  2. Fang, J. R., X. D. Tang, L. Y. Ren, Q. Lin, and X. Z. Huang. 1990. The effect on the biosynthesis of cyclosporin A by the addition of amino acids. Clin. J. Antibiot. 15: 140-141
  3. Issac, C. E., A. Johnes, and M. A. Pickard. 1990. The production of cyclosporins by Tolypocladium niveum strains. Antimicrob. Agents Chemother. 34: 121-127 https://doi.org/10.1128/AAC.34.1.121
  4. Kreuzig, F. 1984. High speed liquid chromatography with conventional instruments for the determination of cyclosporin A, B, C, and D in fermentation broth. J. Chromatogra. 290: 181-186 https://doi.org/10.1016/S0021-9673(01)93572-1
  5. Margaritis, A. and P. S. Chahal. 1989. Development of a fructose based medium for biosynthesis of cyclosporin A by Beauveria nivea. Biotechnol. Lett. 11: 765-768 https://doi.org/10.1007/BF01026093
  6. Traber, R., H. Hofmann, and H. Kobel. 1988. Cyclosporins - new analogs by precursor directed biosynthesis. J. Antibiot. 42: 591-596
  7. Chun, G-T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37: 256-265 https://doi.org/10.1002/bit.260370308
  8. Lee, J. and S. N. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Lett. 11: 77-82 https://doi.org/10.1007/BF01192178
  9. Lee, J. and S. N. Agathos. 1991. Dynamics of L-valine in relation to the production of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 34: Appl. Microbiol. Biotechnol https://doi.org/10.1007/BF00180580
  10. Abdel-Fattah, Y. R., H. E. Enshasy, M. Anwar, H. Omar, E. Abolmagd, and R. A. Zahra. 2007. Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture. J. Microbiol. Biotechnol. 17: 1930-1936
  11. Agathos, S. N., J. W. Marshall, C. Moratiti, R. Parekh, and C. Madhosingh. 1986. Physiological and genetic factors for process development of cyclosporine fermentations. J. Ind. Microbiol. 1: 39-47 https://doi.org/10.1007/BF01569415
  12. Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf. 1984. Biosynthesis of cyclosporin A. Phytochemistry 23: 549-551 https://doi.org/10.1016/S0031-9422(00)80378-7
  13. Kobel, H. and R. Traber. 1982. Directed biosynthesis of cyclosporins. Eur. J. Appl. Microbiol. Biotechnol. 14: 237-240 https://doi.org/10.1007/BF00498470
  14. Lee, M. J., H. N. Lee, K. Han, and E. S. Kim. 2008. Spore inoculum optimization to maximize cyclosporin A production in Tolypochladium niveum. J. Microbiol. Biotechnol. 18: 913-917
  15. El Enshasy H., Y. Abdel-Fattah, A. Atta, H. Omar, S. Abou, El Magd, R. A. Zahra, M. Anwar. 2008. Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor. J. Microbiol. Biotechnol. 18: 128-134
  16. Wenger, R. M. 1984. Synthesis of cyclosporin. Helv. Chim. Acta 67: 502-506 https://doi.org/10.1002/hlca.19840670220
  17. Billich, A. and R. Zocher. 1987. Enzymatic synthesis of cyclosporin A. J. Biol. Chem. 262: 17258-17259
  18. Agathos, S. N., C. Madhosingh, J. W. Marshall, and J. Lee. 1987. The fungal production of cyclosporin. Ann. N.Y. Acad. Sci. 506: 657-662 https://doi.org/10.1111/j.1749-6632.1987.tb23863.x
  19. Dreyfuss, M., E. Harri, H. Hofmann, H. Kobel, W. Pacheand, and H. Tscherter. 1976. Cyclosporin A and C - New metabolites from Trichoderma polysporum. Eur. J. Appl. Microbiol. 3: 125-133 https://doi.org/10.1007/BF00928431
  20. Sekar, C. and K. Balaraman. 1998. Optimization studies on the production of ctcosporin A by solid state fermentation. Bioprocess Eng. 18: 293-296 https://doi.org/10.1007/s004490050444