Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island

독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성

  • Ham, Mi-Seon (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Park, Yu-Mi (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Sung, Hye-Ri (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Sumayo, Marilyn (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Ryu, Choong-Min (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB) ;
  • Park, Seung-Hwan (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB) ;
  • Ghim, Sa-Youl (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University)
  • 함미선 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • 박유미 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • 성혜리 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • ;
  • 류충민 (한국생명공학연구원 유전체연구센터) ;
  • 박승환 (한국생명공학연구원 유전체연구센터) ;
  • 김사열 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소)
  • Received : 2009.05.02
  • Accepted : 2009.06.04
  • Published : 2009.06.28

Abstract

To characterize plant root-associated bacteria in wild plant family Solanaceae, Solanum nigrum L. plants were collected in Dokdo island. Forty four strains of nitrogen-fixing or spore-forming bacteria were isolated from rhizosphere of Solanum nigrum L. plants. Among these, 19 strains were able to produce auxin. Thirteen strains of these produced siderophore as determined by color reaction on CAS-blue plate, 8 strains were able to solubilize phosphate. The 16S rDNA genes of the isolated bacteria were amplified and sequenced. Model plants, pepper and tobacco, were established in order to evaluate the bacterial capacities eliciting growth promotion and induced systemic resistance. The plants treated with strain KUDC1009 were more resistant and capable of growth-promotion than control plants when challenged by either Xanthomonas axonopodis pv. vesicatoria or Erwinia carotovora sub. carotovora strain SCC1. Rhizobacteria isolated from Dokdo island can promote growth of wild type Solanum nigrum L. under much environmental stresses.

Keywords

Dokdo;Solanaceae;plant growth-promoting rhizobacteria;induced systemic resistance

Acknowledgement

Supported by : 농림부

References

  1. Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4 diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155-3163
  2. Broadbent, P., K. F. Baker, N. Franks, and J. Holland. 1977. Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil. Phytopathology 67: 1027-1034
  3. Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Shon, S. H. Park, M. S. Han, and S.-Y. Ghim. 2003. lsolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
  4. Frey-Klett, P., M. Chavatt, M.-L. Clausse, S. Courrier, C. L. Roux, J. Raaijmakers, M. G. Martinotti, J.-C. Pierrat, and J. Garbaye. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New phytol. 165: 317-328 https://doi.org/10.1111/j.1469-8137.2004.01212.x
  5. Heil, M. and I. Baldwin. 2002. Costs of induced resistance: Emerging experimental support for a slippery concept. Trend. Plant Sci. 7: 61-67 https://doi.org/10.1016/S1360-1385(01)02186-0
  6. Jeong, J. H., D. E. Jeong, S. J. Lee, K. J. Seul, C. M. Ryu, S. H. Park, and S.-Y. Ghim. 2007. The effects of wood vinegar on growth and resistance of peppers. Kor. J. Microbiol. Biotechnol. 35: 41-44
  7. Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. Hwangbo, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  8. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2002. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
  9. Woo, S. M. and S. D. Kim. 2007. Confirmation of nonsiderophore antifungal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant grow promoting activity. J. Life Sci. 17: 983-989 https://doi.org/10.5352/JLS.2007.17.7.983
  10. Delany, I., M. M. Sheehan, A. Fenton, S. Bardin, S. Aarons, and F. O'gara. 2000. Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537-546 https://doi.org/10.1099/00221287-146-2-537
  11. Murphy, J. F., M. S. Reddy, C. M. Ryu, J. W. Klopper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Virology 10: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  12. Stohl, E. A., J. L. Milner, and J. Handelsman. 1999. Zwittermicin A biosynthetic cluster. Gene 237: 403-411 https://doi.org/10.1016/S0378-1119(99)00315-7
  13. Arora, N. K., S. C. Kang, and D. K. Maheshwari. 2001. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Marcrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81: 673-677
  14. Glickmann, E. and Yves D. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796
  15. Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Envrion. Microbiol. 6: 1244-1251 https://doi.org/10.1111/j.1462-2920.2004.00658.x
  16. Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199 https://doi.org/10.1046/j.1365-3040.2003.00956.x
  17. Salme, T. and E. Gerhart H. Wagner. 1999. The plantgrowth- promoting rhizobacterium Paenobacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. MPMI 12: 951-959 https://doi.org/10.1094/MPMI.1999.12.11.951
  18. Mohamed, A. Farag, C. M. Ryu, L. W. Sumner, and P. W. Pare. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268 https://doi.org/10.1016/j.phytochem.2006.07.021
  19. Martha, E. T., A. Willems, A. Abril, Ana-Mara Planchuelo, Ral Rivas, D. Ludea, P. F. Mateos, E. Martnez-Molina, and E. Velzquez. 2005. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl. Envrion. Microbiol. 71: 1318-1327 https://doi.org/10.1128/AEM.71.3.1318-1327.2005
  20. Park, M. S., C. W. Kim, J. C. Yang, H. S. Lee, Y. S. Shin, S. H. Kim, and T. M. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol, Res. 160: 127-133 https://doi.org/10.1016/j.micres.2004.10.003
  21. Ramamoorty, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induced of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and disease. Crop Protection 20: 1-11 https://doi.org/10.1016/S0261-2194(00)00056-9
  22. K. S. Jagadeesh, J. H. Kulkarni, and P. U. Krishnaraj. 2001. Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr. Sci. 81: 882
  23. Lee, S. J., S. E. Lee, K. J. Seul, S. H. Park, and S.-Y. Ghim. 2006. Plant growth-promoting capabilities of diazotrophs from wild gramineous crops. Kor. J. Microbiol. Biotechnol. 34: 78-82
  24. Research Institute for Ullengdo & Dokdo Islands. 2008. The plant of Dokdo island. pp 166-221. Nature of Dokdo island. Kyungpook National University Press. Daegu. Korea
  25. B. Hameeda, G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphatesolubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242 https://doi.org/10.1016/j.micres.2006.05.009
  26. Schwyn, B. and J. B. Neilans. 1987. University chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 46-52
  27. Padidam, M. 2003. Chemically regulated gene expression in plants. Curr. Opin. Plant Biol. 6: 169-177 https://doi.org/10.1016/S1369-5266(03)00005-0
  28. Ryu, C. M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420 https://doi.org/10.1046/j.1469-8137.2003.00883.x
  29. Kang, S. H., H. S. Cho, H. Cheong, C. M. Ryu, J. F. Kim, and S. H. Park. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defence on pepper (Capsicum annuum L.) J. Microbiol. Biotechnol. 17: 96-103
  30. Murashing T. and Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Planta 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  31. S, Prez-Miranda, N. Cabirol, R. George-Tllez, L. S. Zamudio- Rivera, and F.J. Fernndez 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131 https://doi.org/10.1016/j.mimet.2007.03.023
  32. Lee, S. C. and B. K. Hwang. 2005. Induction of some defense- related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221: 790-800 https://doi.org/10.1007/s00425-005-1488-6
  33. Thianmann, K. V. 1937. On the nature of inhibition caused by auxin. Am. J. Bot. 24: 407-412 https://doi.org/10.2307/2436422
  34. Loper, J. E. and Schroth, M. N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76: 386-389 https://doi.org/10.1094/Phyto-76-386
  35. Ryu, C. M., J. F. Murphy, K. S. Mysore, and J. W. Kloepper. 2004. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid dependent signaling pathway. Plant J. 39: 381-392 https://doi.org/10.1111/j.1365-313X.2004.02142.x
  36. Gorden, S. A. and R. P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant physiol. 26: 192-195 https://doi.org/10.1104/pp.26.1.192
  37. Andrey, A. B., I. C. Dodd, N. Hontzeas, J. C. Theobald, V. I. Safronova, and W. J. Davies. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New phytol. 181: 413-423 https://doi.org/10.1111/j.1469-8137.2008.02657.x