Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass

CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성

  • 윤상옥 (강릉원주대학교 세라믹공학과) ;
  • 김명수 (강릉원주대학교 세라믹공학과) ;
  • 김관수 (강릉원주대학교 세라믹공학과)
  • Published : 2009.05.01


Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_{2}O_{3}-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_{2}O_{3}$, $CaCO_3-Al_{2}O_{3}$ mixture, and $CaCO_3-Al_{2}O_{3}$ compound ($CaAl_{2}O_{4}$), respectively, were used. The addition of $Al_{2}O_{3}$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_{2}O_{3}$ mixture and $CaAl_{2}O_{4}$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_{2}O_{4}$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.


  1. R. R. Tummala, 'Ceramic and glass ceramic packaging in the 1990's', J. Am. Ceram. Soc., Vol. 74, No. 5, p. 895, 1991
  2. J. R. Yoon, S. W. Lee, and H. Y. Lee, 'Microwave dielectric properties of low temperature co-fired ceramics with glass frit and $TiO_2$ additives', J. of KIEEME(in Korean), Vol. 17, No. 9, p. 942, 2004
  3. K. Kawakami, 'A low-temperature cofiring multilayer ceramic substrate', Proc. Elec. Div. Fall meeting; Ed. by J. B. Blum and W. R. Cannon, Orlando, USA, p. 95, 1985
  4. A. H. Kumar, 'Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper', US Patent, 4,413,061, 1983
  5. C. S. Chen, C. C. Chou, C. S. Chen, and I. N. Lin, 'Microwave dielectric properties of glass-MCT low temperature co-firable ceramics', J. Eur. Ceram. Soc., Vol. 24, No. 6, p. 1795, 2004
  6. Y. Kobayashi and E. Kato, 'Low temperature fabrication of anorthite ceramics', J. Am. Ceram. Soc., Vol. 77, No. 3, p. 833, 1994
  7. C. L. Lo, J. G. Duh, and B. S. Chiou, 'Low temperature sintering and crystallisation behaviour of low loss anorthite-based glass-ceramics', J. Mater. Sci., Vol. 38, p. 693, 2003
  8. C. J. Dileep Kumar, E. K. Sunny, N. Raghu, N. Venkataramani, and A. R. Kulkarni, 'Synthesis and characterization of crystallizable anorthite-based glass for a low-temperature cofired ceramic application', J. Am. Ceram. Soc., Vol. 91, No. 2, p. 652, 2008
  9. J. H. Kim, S. J. Hwang, W. Y. Sung, and H. S. Kim, 'Effect of anorthite and dopside on dielectric properties of $Al_2O_3$/glass composite based on high strength of LTCC substrate', J. Mater. Sci., Vol. 43, p. 4009, 2008
  10. I. J. Choi and Y. S. Cho, 'Effects of various oxide fillers on physical and dielectric properties of calcium aluminoborosilicate- based dielectrics', J. Electroceram., (In Press)
  11. T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, “Effect of glass additions on BaO-$TiO_2-WO_3$microwave ceramics', J. Am. Ceram. Soc., Vol. 77, No. 7, p. 1909, 1994
  12. B. W. Hakki and P. D. Coleman, 'A dielectric resonator method of measuring inductive capacities in the millimeter range', IRE Trans. Microwave Theory Tech., Vol. MTT-8, p. 402, 1960
  13. C. L. Lo, J. G. Duh, B. S. Chiou, and W. H. Lee, 'Low-temperature sintering and microwave dielectric properties of anorthite- based glass-ceramics', J. Am. Ceram. Soc., Vol. 85, No. 9, p. 2230, 2002
  14. R. D. Shannon, 'Dielectric polarizabilities of ions in oxides and fluorides', J. Appl. Phys., Vol. 73, No. 1, p. 348, 1993
  15. H. Scholze, 'Glass:nature, structure and properties', Springer, New York, p. 318, 1991
  16. A. A. Appen, 'Versuch zur klassfizierung von komponenten nach ihrem einflub auf die oberflachenspannung von silikatschmelzen', Silikattechnik, Vol. 5, p. 11, 1954
  17. W. D. Kingery, 'Implications of sintering theries with regard to process controls', Tras. VIIth Inter. Ceram. Cong., p. 461, 1960
  18. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 'Introduction to ceramic', John Wiley & Sons, New York, Vol. 2, p. 205, 1976
  19. R. M. German, S. Farooq, and C. M. Kipphut, 'Kinetics of liquid phase sintering', Mater. Sci. Eng., Vol. A105/106, p. 215, 1988
  20. Y. S. Chu, C. W. Kwon, J. K. Lee, and K. B. Shim, 'Microstructure and physical properties of porous material fabricated from a glass abrasive sludge', J. Kor. Ceram. Soc., Vol. 43, No. 5, p. 277, 2006
  21. R. M. German, 'Liquid phase sintering', Plenum Press, New York, 1985
  22. Y. S. Lee, T. M. Youn, and W. H. Kang, 'Dissolution Properties of $K_2O-CaO-MgO-SiO_2-P_2O_5$ Glasses', J. Kor. Ceram. Soc., Vol. 40, No. 11, p. 1132, 2003
  23. F. T. Trouton, 'Coefficient of viscous traction and it's relation to that of viscosity', Proc. R. Soc. London, Vol. A77, p. 426, 1906
  24. R. Dimitrijevic, V. Dondur, and A. Kremenovic, 'Thermally induced phase transformations of Ca-exchanged LTA and FAU zeolite frameworks : rietveld refinement of the hexagonal $CaAl_2Si_2O_8$ diphyllosilicate structure', Zeolites, Vol. 16, No. 4, p. 294, 1996
  25. A. J. Bosman and E. E. Havinga, 'Temperature dependence of dielectric constants of cubic ionic compounds', Phys. Rev., Vol. 129, No. 4, p. 1593, 1963
  26. 김명수, '$Al_2O_3$ 충전제의 함량, 입도 및 소결시간이 충전제와 $CaO-Al_2O_3-SiO_2$ 유리로 구성된 복합체의 유전특성에 미치는 영향', 강릉대학교, 박사학위논문