Structural Study of Interface Layers in Tetragonal-NiSi (010)/Si using Density Functional Theory

밀도범함수를 이용한 정방정계-NiSi (010)/Si 계면 층의 구조 연구

  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 김대현 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Published : 2009.05.01


Tetragonal-NiSi (010)/Si superstructures were calculated for studying the interface structure using density functional theory, The orthorhombic-NiSi was changed to the tetragonal-NiSi to be matched with the Si surface for epitaxy interface. The eight interface models were produced by the type of the Si surfaces, The tetragonal-NiSi (010)/Si (020)[00-1] superstructure was energetically the most favorable, and the interface thickness of this superstructure was the shortest among the tetragonal-NiSi (010)/Si superstructures. However, in the case of tetragonal-NiSi (010)/Si (010)[00-1] superstructure, it was energetically the most unfavorable, and the interface thickness was the longest. The energies and interface thicknesses of tetragonal-NiSi (010)/Si superstructures were influenced by the coordination number of Ni atoms and the bond length between atoms located at the interface.


  1. J. P. Gambino and E. G. Colgan, 'Silicides and ohmic contacts', Mat. Chem. Phys., Vol. 52, p. 99, 1998
  2. T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Ono, Y. Katsumata, and H. Iwai, 'Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI', IEEE Trans. Electron. Dev., Vol. 42, p. 915, 1995
  3. Front End Process, International Technology Roadmap semiconductors, 2005
  4. B. Cafra, A. Alberti, L. Ottaviano, C. Bongiorno, G. Mannino, T. Kammler, and T. Feudel, 'Thermal stability of nickel silicide on silicon on insulator (SOI) material', Mat. Sci. Eng. B, Vol. 114, p. 228, 2004
  5. Y.-C. Kim, P. Adusumilli, L. J. Lauhon, D. N. Seidman, S.-Y. Jung, H.-D. Lee, R. L. Alvis, R. M. Ulfig, and J. D. Olson, 'Three-dimensional atomic-scale mapping of Pd in $Ni_{1-x}Pd_xSi/Si$(100) thin films', Appl. Phys. Lett., Vol. 91, p. 113106, 2007
  6. D.-H. Kim, H.-I. Seo, and Y.-C. Kim, 'Structural study of epitaxial NiSi on Si (001) substrate by using density functional theory (DFT)', J. Kor. Soc. of Semi. Equi. Tech., Vol. 6, p. 65, 2007
  7. D.-H. Kim, H.-I. Seo, and Y.-C. Kim, 'Structural study of tetragonal-$Ni_{1-x}Pd_xSi/Si$(001) using density functional theory (DFT)', J. Kor. Mat. Res., Vol. 18, p. 482, 2008
  8. G. Profeta, S. Picozzi, A. Continenza, and R. Podloucky, 'Supersoft silicides: Ab initio study of (001) TSi surface and (001) Si/TSi (T = Fe, Co, and Ni) interface', Phys. Rev. B, Vol. 70, p. 235338, 2004
  9. G. Kresse and J. Hafnrt, 'Ab initio molecular dynamics for liquid metals', Phys. Rev. B, Vol. 47, p. 558, 1993; ibid. Vol. 49, p. 14251, 1994
  10. G. Kresse and J. Hafnrt, 'Ab initio molecular dynamics for liquid metals', Phys. Rev. B, Vol. 49, p. 14251, 1994
  11. G. Kresse and J. Furthmuller, 'Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set', Comput. Mat. Sci., Vol. 6, p. 15, 1996
  12. G. Kresse and J. Furthmuller, 'Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set', Phys. Rev. B, Vol. 54, p. 11169, 1996
  13. G. Kresse and D. Joubert, 'From ultra pseudopotentials th the projector augmented- wave method', Phys. Rev. B, Vol. 59, p. 1758, 1999
  14. P. Pulay, 'Convergence acceleration of iterative sequences: The case of SCF iteration', Chem. Phys. Lett., Vol. 73, p. 393, 1980
  15. Y. Imai and A. Watanabe, 'Electronic structures of platinum group elements silicides calculated by a first-principle pseudopotential method using plane-wave basis', J. Alloys & Compounds, Vol. 417, p. 173, 2006
  16. K. Momma and F. Izumi, 'VESTA: a three-dimensional visualization system for electronic and structural analysis', J. Appl. Crystallogr., Vol. 41, p. 653, 2008