DOI QR코드

DOI QR Code

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca (Department of Structural Engineering, Milan University of Technology (Politecnico)) ;
  • Mola, Franco (Department of Structural Engineering, Milan University of Technology (Politecnico))
  • Received : 2008.01.11
  • Accepted : 2009.03.05
  • Published : 2009.05.25

Abstract

The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.

Keywords

creep;composite steel-concrete beams;deformable connectors;skew bending;torsion;thin-walled section

References

  1. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme bei Beton und Spannbeton", Beton und Stahlbetonbau, 11, 261-269.
  2. Amadio, C. and Fragiacomo, M. (1997), "Simplified Approach to Evaluate Creep and Shrinkage Effects in Steel-Concrete Composite Beams", J. Struct. Eng. ASCE, 123(9), 1153-1164. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153)
  3. Ayoub, A. (2005), "A force-based model for composite steel-concrete beams with partial interaction", J. Constr. Steel Res., 61(3), 387-414. https://doi.org/10.1016/j.jcsr.2004.08.004
  4. Ayoub, A.S. and Filippou, F.C. (2000), "Mixed formulation of nonlinear steel-concrete composite beam element", J. Struct. Eng. ASCE, 126(3), 371-381.
  5. Bazant, Z.P. (1972), "Prediction of Concrete Creep Effects using Age-Adjusted Effective Modulus Method", ACI J., 69(4), 212-217.
  6. Bazant, S.P. (1975), Theory of Creep and Shrinkage in Concrete Structures; A Precis of Recent Developments, Mechanics Today, 2, Pergamon Press.
  7. Bradford, M.A. and Gilbert, R.I. (1992), "Composite Beams with Partial Interaction under Sustained Loads", J. Struct. Eng. ASCE, 118(7), 1871-1883. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871)
  8. CEBFIP (1993), Model Code 1990, Design Code, Thomas Telford, London.
  9. Chapman, J.C., Dowling, P.J., Lim, P.T.K. and Billington, C.J. (1971), "The Structural Behaviour of Steel and Concrete Box Girder Bridges", Struct. Eng., 49(3), 111-120.
  10. Chiorino, M.A., Koprna, M., Mola, F. and Napoli, P. (1984), CEB-FIP Manual on Structural Effects of Time Dependent Behaviour of Concrete, CEB Bulletin d'Information no. 142-142bis, Georgi, St. Saphorin, CH.
  11. Colville, J. (1973), "Tests of Curved Steel-Concrete Composite Beams", Journal of the Structural Division, 99(7), 1555-1570.
  12. Dall'Asta, A. and Zona, A. (2004), "Comparison and validation of displacement and mixed elements for the nonlinear analysis of continuous composite beams", Comput. Struct., 82(23-26), 2117-2130. https://doi.org/10.1016/j.compstruc.2004.04.009
  13. De Miranda, F. (1961), "Comportamento statico sotto azioni torcenti di ponti a travata in sistema misto acciaiocalcestruzzo", Conf. at Universita di Pisa, (Extracted from Costruzioni Metalliche, No. 4, 1961) (in Italian).
  14. Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finite-Element Model for Collapse and Long-Term Analysis of Steel-Concrete Composite Beams", J. Struct. Eng. ASCE, 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
  15. Giussani, F. (2004), "Stresses and Deformations in Composite Steel-Concrete Elements with Deformable Connectors Subjected to Sustained Loads", PhD Thesis, Politecnico di Milano, Italy.
  16. Giussani, F. and Mola, F. (2009), "The displacement method for the long-term analysis of steel-concrete beams with flexible connection", J. Struct. Eng., submitted for acceptance.
  17. Kim, K. and Yoo, C.H. (2006a), "Effects of external bracing on horizontally curved box girder bridges during construction", Eng. Struct., 28(12), 1650-1657. https://doi.org/10.1016/j.engstruct.2006.03.001
  18. Kim, K. and Yoo, C.H. (2006b), "Steel Concrete Composite Trapezoidal Box Girders in Positive Bending", Adv. Struct. Eng., 9(5), 707-718. https://doi.org/10.1260/136943306778827529
  19. Kolbrunner, C.F. and Basler, K. (1969), Torsion in Structures, Springer-Verlag Berlin Heidelberg, New York.
  20. Kwak, H.G. and Seo, Y.J. (2002), "Time-dependent behavior of composite beams with flexible connectors", Comput. Methods Appl. M., 191(34), 3751-3772. https://doi.org/10.1016/S0045-7825(02)00293-1
  21. Limkatanyu, S. and Spacone, E. (2002), "Reinforced concrete frame element with bond interfaces. II: state determinations and numerical validation", J. Struct. Eng.ASCE, 128(3), 356-364. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(356)
  22. McHenry, D.(1943), "A New Aspect of Creep in Concrete and its Applications to Design", Proc. ASTM, 1069-1087.
  23. Mola, F. (1981), "Il Metodo delle Funzioni di Rilassamento Ridotte nella Risoluzione di Strutture Elastoviscose non Omogenee a Modulo Elastico Variabile nel Tempo", Studi e Ricerche, Italcementi, Bergamo, 3 (in Italian).
  24. Mola, F. (1982), "Applicazione del Metodo delle Funzioni di Rilassamento Ridotte all'Analisi di Strutture Viscoelastiche non Omogenee", Studi e Ricerche, Italcementi, Bergamo, 4 (in Italian).
  25. Mola, F. (1986), "Analisi generale in fase viscoelastica lineare di strutture e sezioni a comportamento reologico non omogeneo", Studi e Ricerche, Italcementi, Bergamo, 8, 119-196, (in Italian).
  26. Mola, F. (1994), "Creep Analysis of Composite Steel-Concrete Members with Deformable Connectors", ASCE Structures Congress XII, Atlanta, 2095-2111.
  27. Mola, F. and Gatti, M. (1996), "General and Approximate Approach for the Analysis of Composite Steel-Concrete Members with Deformable Connectors", Studi e Ricerche, Italcementi, Bergamo, 17, 69-98.
  28. Mola, F. and Giussani, F. (2003), "Service Stage Behaviour of Composite Bridges", III Int. Conf. on New Dimensions in Bridges, Kuala Lumpur, Malaysia, April 9-10, 45-62.
  29. Nakamura, S., Momiyama, Y., Hosaka, T. and Homma, K. (2002), "New technologies of steel concrete composite Bridges", J. Constr. Steel Res., 58(1), 99-130. https://doi.org/10.1016/S0143-974X(01)00030-X
  30. Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), "Tests and Analysis of Composite Beams with Incomplete Interaction", Proc. of Society for Experimental Stress Analysis, 9, 75-92.
  31. Ng, S.F., Cheung, M.S. and Hachem, H.M. (1993), "Study of a Curved Continuous Composite Box Girder Bridge", Can. J. Civil Eng., 20(1), 107-119. https://doi.org/10.1139/l93-012
  32. Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D. (2007), "Short- and Long-Term Deflections in Reinforced, Prestressed, and Composite Concrete Beams", J. Struct. Eng. ASCE, 133(4), 495-506. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:4(495)
  33. Sennah, K. and Kennedy, J.B. (1999), "Simply Supported Curved Cellular Bridges: Simplified Design Method", J. Bridge Eng., 4(2), 85-94. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:2(85)
  34. Simo, J.C. and Vu-Quoc, L. (1991), "A Geometrically-Exact Rod Model Incorporating Shear and Torsion-Warping Deformation", Int. J. Solids Struct., 27(3), 371-393. https://doi.org/10.1016/0020-7683(91)90089-X
  35. Thevendran, V., Chen, S., Shanmugam, N.E. and Liew, J.Y.R. (1999), "Nonlinear analysis of steel-concrete composite beams curved in plan", Finite Elem. Anal. Des., 32(3), 125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
  36. Thevendran, V., Shanmugam, N.E., Chen, S. and Liew, J.Y.R. (2000), "Experimental Study on Steel-Concrete Composite Beams Curved in Plan", Eng. Struct., 22(8), 877-889. https://doi.org/10.1016/S0141-0296(99)00046-2
  37. Tolstov, G.P. (1976), Fourier Series, Dover Publications Inc., New York.
  38. Topkaya, C. and Williamson, E.B. (2003), "Development of computational software for analysis of curved girders under construction loads", Comput. Struct., 81(21), 2087-2098. https://doi.org/10.1016/S0045-7949(03)00258-X
  39. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme bei Beton und Spannbeton", Beton und Stahlbetonbau, 10, 230-238
  40. Turkstra, C.J. and Fam, A.R.M. (1978), "Behaviour Study of Curved Box Bridges", Journal of the Structural Division, 104(3), 453-462.
  41. Virtuoso, F. and Vieira, R. (2004), "Time dependent behaviour of continuous composite beams with flexible connection", J. Constr. Steel Res., 60(3-5), 451-463. https://doi.org/10.1016/S0143-974X(03)00123-8
  42. Vlasov, V.Z. (1962), Pieces Longues en Voiles Minces, Eyrolles, Paris.

Cited by

  1. Control of time-dependent effects in steel-concrete composite frames vol.13, pp.4, 2013, https://doi.org/10.1007/s13296-013-4002-1
  2. Displacement Method for the Long-Term Analysis of Steel-Concrete Beams with Flexible Connection vol.136, pp.3, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000109
  3. Analysis, design and construction of curved composite girder bridges: State-of-the-art vol.10, pp.3, 2010, https://doi.org/10.1007/BF03215831
  4. Experimental study on steel reinforced concrete columns subjected to combined bending-torsion cyclic loading vol.27, pp.11, 2018, https://doi.org/10.1002/tal.1479