Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Buyeong Gold-silver Deposit, Republic of Korea

부영 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구

  • Lee, Gill-Jae (Korea Institute of Geoscience and Mineral Resources) ;
  • Yoo, Bong-Chul (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong-Kil (Geotechnical department, Dohwa Consulting Engineers Co., LTD.) ;
  • Chi, Se-Jung (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyun-Koo (Department of geology and environmental sciences, Chungnam National University)
  • 이길재 (한국지질자원연구원 광물자원연구본부) ;
  • 유봉철 (한국지질자원연구원 광물자원연구본부) ;
  • 이종길 ((주)도화종합기술공사 지반공학부) ;
  • 지세정 (한국지질자원연구원 광물자원연구본부) ;
  • 이현구 (충남대학교 지질환경과학과)
  • Published : 2009.12.28


The Buyeong gold-silver deposit consists of quartz veins that fill along the NS fault zone within Cretaceous Goseong formation. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, chlorite, epidote and sulfides such as pyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, galena and galenobismutite. Supergene stage is composed of malachite, goethite, chalcocite, and sphalerite oxide. Fluid inclusion data indicate that homogenization temperatures and salinities range from 112 to $340^{\circ}C$ and from 0.2 to 7.9 wt.% NaCl, respectively. Sulfur(3.2~3.9‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source as well as partly host rocks. The calculated oxygen(4.3~6.0‰) and hydrogen(-60~-64‰) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.


Buyeong gold-silver deposit;mineralization;fluid inclusion;isotope


  1. Chi, J.M., Kim, H.S., Oh, I.S. and Kim, H.C. (1983)Explanatory text of the geological map of Samcheonposheet. Korea Institute of Energy and Resources
  2. Choi, S.H., So, C.S. and Lee, J.H. (1993) Mineralogical,stable isotope and fluid inclusion studies of copperbearinghydrothermal vein deposits in Goseong miningdistrict, Gyeongsang basin, Korea. Transactions ofthe Institution of Mining and Metallurgy, v.102, p.123-133
  3. Kim, C.J. (1984) Mineral paragenesis and fluid inclusionsof Geoje copper ore deposits. J. Korean Inst. MiningGeol., v.17, p.245-258
  4. Kim, J.D. (1987) Geology and ore deposits of the Donghaemine, Goseong area. J. Korean Inst. Mining Geol.,v.20, p.213-221
  5. Kim, K.H. and Nakai, N. (1988) Isotopic compositions ofprecipitations and groundwaters in South Korea. J.Geol. Soc. Korea, v.24, p.37-46
  6. Kim, S.U. (1973) A regional study for developments ofKyeongnam copper metallogenic province. J. KoreanInst. Mining Geol., v.6, p.133-170
  7. Koh, S.M., Ryoo, C.R., and Song, M.S. (2003) Mineralizationcharacteristics and structural controls ofhydrothermal deposits in the Gyeongsang basin,South Korea. Res. Geol., v.53, p.175-192 https://doi.org/10.1111/j.1751-3928.2003.tb00168.x
  8. Korea Mining Promotion Corporation (1979) Drilling surveyreport of ore deposits. p.184-185
  9. Korea Mining Promotion Corporation (1982) Drilling surveyreport of ore deposits. p.189-191.
  10. Lee, S.Y., Choi, S.G., So, C.S., Ryu, I.C., Wee, S.M. andHeo, C.H. (2003) Base-metal mineralization in theCretaceous Gyeongsang basin and its genetic implications,Korea: the Haman-Gunbug-Goseong(-Changwon)and the Euiseong metallogenic provinces. Econ.Environ. Geol., v.36, p.257-268
  11. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur andcarbon. In Barnes, H. L., (ed.) Geochemistry ofHydrothermal Ore Deposits. New York, John Wileyand Sons, p.509-567
  12. Park, H.I. (1983) Ore and fluid inclusions of theTongyeong gold-silver deposits. J. Korean Inst. MiningGeol., v.16, p.245-251
  13. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation ofmicrothermometric data for $H_{2}O$-NaCl fluid inclusionIn De Vivo, B., and Frezzotti, M.L., (eds.) Fluid inclusionsin minerals: Method and applications. ShortCourse International Mineralogical Assoc., p.117-130
  14. Park, T.H. and Jwa, Y.J. (2000) Local variation of magneticsusceptibility of Cretaceous to Tertiary granitoidsin the Gyeongsang basin - magnetite-/illmenite-seriesrevisited. J. Geol. Soc. Korea, v.36, p.487-498
  15. Korea Mining Promotion Corporation (1981) Ore depositof Korea. p.98-99
  16. Barret, T.J. and Anderson, G.M. (1988) The solubility ofsphalerite and galena in 1-5m NaCl solutions to300oC. Geochim. Cosmochim. Acta., v.52, p.813-820 https://doi.org/10.1016/0016-7037(88)90353-5
  17. Ohmoto, H. (1986) Stable isotope geochemistry of oredeposits. Reviews in Min., v.16, p.491-560
  18. Korea Mining Promotion Corporation (1987) Ore depositof Korea. p.930-931
  19. Lee, J.H. (1992) Hydrothermal copper mineralization inthe Goseong district, Korea. Unpub. Ph.D. thesis.Korea Univ., 117p
  20. Linke, W.F. (1965) Solubilities of inorganic and metalorganiccompounds. 4th ed., Washington, D.C., Am.Chem. Soc., 1914p
  21. Shelton, K.L., So, C.S., Haeussler, G.T., Chi, S.J. and Lee,K.Y. (1990) Geochemical studies of the Tongyounggold-silver deposits, Republic of Korea; Evidence ofmeteoric water dominance in a Te-bearing epithermalsystem. Econ. Geol., v.85, p.1114-1132 https://doi.org/10.2113/gsecongeo.85.6.1114
  22. Jeong, G.S. (1973) Characteristics and geophysical explorationmethods of Gyeongnam copper depsotis. J.Korean Inst. Mining Geol., v.6, p.171-193
  23. Matsuhisa, Y., Goldsmith, R. and Clayton, R.N. (1979)Oxygen isotope fractionation in the system quartzalbite-anorthite-water. Geochim. Cosmochim. Acta.,v.43, p.1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  24. Jeong, K.C. (1970) Geophysical exploration and drillingresults of Samsan Jeil copper mine. J. Korean Inst.Mining Geol., v.3, p.223-229
  25. Paik, I.S., Kang, H.C., Huh, M. and Yang, S.Y. (2006) Geoseong formation (Yucheon group) in the southern partof the Gyeongsang basin, Korea: occurrences andstratigraphy. J. Geol. Soc. Korea, v.42, p.483-505
  26. Yoo, B.C., Lee, J.K., Lee, G.J. and Lee, H.K. (2008) Theoptimal resource development for analyzing data ofdeposit types, ore reseves of oversea metal resource.Econ. Environ. Geol., v.41, p.773-795
  27. Bodnar, R.J. (1983) A method of calculating fluid inclusionvolumes based on vapor bubble diameters and P-V-TXproperties of inclusion fluids. Econ. Geol., v.78,p.535-542 https://doi.org/10.2113/gsecongeo.78.3.535
  28. Hall, D.L. Sterner, S.M. and Bodnar, R.J. (1988) Freezingpoint depression of NaCl-KCl-H2O solutions. Econ.Geol., v.83, p.197-202 https://doi.org/10.2113/gsecongeo.83.1.197
  29. Park, H.I., Choi, S.W., Chang, H.W. and Lee, M. S. (1983)Genesis of the Copper deposits in Goseong district,Gyeongnam area. J. Korean Inst. Mining Geol., v.16,p.135-147
  30. Sheppard, S.M.F. (1986) Characterization and isotopevariations in natural waters. Reviews in Min., v.16,p.165-183
  31. Chi, S.J. (1984) Reflectance and microhardness characteristicsof sulfide minerals from the Sambong coppermine. Korean Institute of Mining Geology Journal,v.17, p.115-139
  32. Park, E.Y. (2000) Mineral, fluid inclusion and stable isotopestudies of the Jangan Cu deposit in the Geojaearea. unpub. Ms. Thesis. Chungnam National Univ.,63p
  33. Gammons, C.H. and Williams-Jones, A.E. (1995) The solubilityof Au−-Ag alloy+AgCl in HCl/NaCl solutions at300oC. New data on the stability of Au(I) chloridecomplexes in hydrothermal fluids. Geochim. Cosmochim.Acta., v.59, p.3453-3468 https://doi.org/10.1016/0016-7037(95)00234-Q
  34. Hass, J.L. (1971) The effect of salinity on the maximumthermal gradient of a hydrothermal system at hydrostaticpressure. Econ. Geol., v.66, p.940-946 https://doi.org/10.2113/gsecongeo.66.6.940
  35. Marignac, C. (1989) Sphalerite stars in chalcopyrite: Arethey always the result of an unmixing process?.Miner. Depos., v.24, p.176-182 https://doi.org/10.1007/BF00206440
  36. Choi, S.G., Wee, S.M. and Ryu, I.C. (2005) Tectonics,shallow magmatism, and mineralization in the Southernpart of the Korean peninsula. Korea Science andEngineering foundation, 100p
  37. Cook, D.R., Heithersay, P.S., Wolfe, R. and Calderon, A.L.(1998) Australian and western Pacific porphyry Cu-Audeposits. J. Australian Geol. Geophy., v.17, p.97-104
  38. KIGAM (2008) Resource information (monthly) (http://rik.kigam.re.kr)
  39. Luzhnaya, N.P. and Vereshtchetina, I.P. (1946) Sodium,calcium, magnesium chlorides in aqueous solutions at−-57 to +25${^{\circ}C}$(polythermal solubility). Zhurnl. Prikl.Khimii., v.19, p.723-733 Sodium, calcium, magnesium chlorides in aqueous solutions at −57 to +25oC(polythermal solubility)
  40. Sterner, S.M., Hall, D.L. and Bodnar, R.J. (1988) Syntheticfluid inclusions. V. conditions. Geochim. Cosmochim.Acta., v.52, p.989-1005 https://doi.org/10.1016/0016-7037(88)90254-2
  41. Chang, T.W., Hwang, S.K., Lee, D.W., Oh, I.S., Kim, H.C.and Kim, E.H. (1983) Explanatory text of the geologicalmap of Chung Mu sheet. Korea Institute ofEnergy and Resources
  42. Korea Mining Promotion Corporation (1968) Ore depositof Korea. 259p
  43. Choi, S.G., Pak, S.J., Kim, C.S., Ryu, I.C. and Wee, S.M.(2006) The origin and evolution of mineralizing fluidsin the Cretaceous Gyeongsang basin, SoutheasternKorea. J. Geochem. Explor., v.89, p.61-64 https://doi.org/10.1016/j.gexplo.2005.12.009
  44. Jwa, Y.J. (1998) Petrology of the igneous rocks in theGoseong area, Gyeongsang basin: II. Trace elementgeochemistry and Rb-Sr radiometric age. Econ. Environ.Geol., v.31, p.473-483
  45. Korea Mining Promotion Corporation (1977) Drilling surveyreport of ore deposits. p.234-236