DOI QR코드

DOI QR Code

How Environmental Agents Influence the Aging Process

  • Karol, Meryl H. (Department of Environmental and Occupational Health, University of Pittsburgh)
  • Published : 2009.04.30

Abstract

Aging is a multifaceted biological process that affects all organs and organ systems of the body. This review provides an up-to-date analysis of this highly exciting, rapidly changing field of science. The aging process is largely under genetic control but is highly responsive to diverse environmental influences. The genes that control aging are those that are involved with cell maintenance, cell damage and repair. The environmental factors that accelerate aging are those that influence either damage of cellular macromolecules, or interfere with their repair. Prominent among these are chronic inflammation, chronic infection, some metallic chemicals, ultraviolet light, and others that heighten oxidative stress. Other environment factors slow the aging process. Included among these agents are resveratrol and vitamin D. In addition, dietary restriction and exercise have been found to extend human lifespan. The various mechanisms whereby all these agents exert their influence on aging include epigenetic modification, chromatin maintenance, protection of telomeres, and anti-oxidant defense, among others. The complex process of aging remains under continued, intense investigation.

References

  1. Adler, A. S., Kawahara, T. L., Segal, E. and Chang, H. Y. (2008). Reversal of aging by NFkB blockade. Cell Cycle 7, 556-559 https://doi.org/10.4161/cc.7.5.5490
  2. Ayrun, N., Xiaobin, L., Surdulescu. G. L., Swaminathan, R., Spector, T. D. and Aviv, A. (2007). Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 86, 1420-1425 https://doi.org/10.1093/ajcn/86.5.1420
  3. Balaban, R. S., Nemoto, S. and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495 https://doi.org/10.1016/j.cell.2005.02.001
  4. Blackburn, E. H. and Gall, J. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33-53 https://doi.org/10.1016/0022-2836(78)90294-2
  5. Brys, K., Vanfleteren, J. R. and Braeckman, B. P. (2007). Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exper. Gerontol. 42, 845-851 https://doi.org/10.1016/j.exger.2007.02.004
  6. Campisi, J. and Vijg, J. (2009). Does damage to DNA and other macromolecules play a role in aging? If so, how? J. Gerontol. A Biol. Sci. Med. Sci. 64A, 175-178 https://doi.org/10.1093/gerona/gln065
  7. Cappola, A. R., Xue, Q. L., Ferrucci, L., Guralnik, J. M., Volpato, S. and Fried, L. P. (2003) Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J. Clin. Endocrinol. Metab. 88, 2019-2025 https://doi.org/10.1210/jc.2002-021694
  8. Car, J. and Sheikh, A. (2004). Fasting and asthma: an opportunity for building patient-doctor partnership. Prim. Care Respir. J. 13, 133-135 https://doi.org/10.1016/j.pcrj.2004.02.003
  9. Carrero, J. J., Stenvinkel, P., Fellstrom, B. Qureshi, A. R., Lamb, K., Heimburger, O., Barany, P., Radhakrishnan, K., Lindholm, B., Soveri, I., Nordfors, L. and Shiels, P. G. (2008). Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J. Intern. Med. 263, 302-312 https://doi.org/10.1111/j.1365-2796.2007.01890.x
  10. De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., Van Criekinge, W. and Bekaert, S. (2008). Studying telomeres in a longitudinal population based study. Front. Biosci. 13, 2960-2970 https://doi.org/10.2741/2901
  11. Demissie, S., Levy, D., Benjamin, E. J., Cupples, L. A., Gardner, J. P., Herbert, A., Kimura, M., Larson, M. G., Meigs, J. B., Keaney, J. F. and Aviv, A. (2006). Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5, 325-330 https://doi.org/10.1111/j.1474-9726.2006.00224.x
  12. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D. and Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci., USA 101, 17312-17315 https://doi.org/10.1073/pnas.0407162101
  13. Farooqui, T. and Farooqui, A. A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 130, 203-215 https://doi.org/10.1016/j.mad.2008.11.006
  14. Farzaneh-Far, R., Cawthon, R. M., Na, B., Browner, W. S., Schiller, N. B. and Whooley, M. A. (2008). Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler. Thromb. Vasc. Biol. 28, 1379-1384 https://doi.org/10.1161/ATVBAHA.108.167049
  15. Finkel, T. and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247 https://doi.org/10.1038/35041687
  16. Fitzpatrick, A. L., Kronmal, R. A., Gardner, J. P., Psaty, B. M., Jenny, N. S., Tracy, R. P., Walston, J., Kimura, M. and Aviv, A. (2007). Leukocyte telomere length and cardiovascular disease in the Cardiovascular Health Study. Am. J. Epidemiol. 165, 14-21 https://doi.org/10.1093/aje/kwj346
  17. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suñer, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C. and Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604-10609 https://doi.org/10.1073/pnas.0500398102
  18. Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. and De Benedictis, G. (2000). Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244-254
  19. Gan, L. and Mucke, L. (2008). Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron 58, 10-14 https://doi.org/10.1016/j.neuron.2008.03.015
  20. Giunta, B., Fernandez, F., Nikolic, W. V., Obregon, D., Rrapo, E., Town, T. and Tan, J. (2008). Inflammaging as a prodrome to Alzheimer's disease. J. Neuroinflam. 5, 1742-1756
  21. Halaschek-Wiener, J., Vulto, I., Fornika, D., Collins, J., Connors, J. M., Le, N. D., Lansdorp, P. M. and Brooks-Wilson A. (2008). Reduced telomere length variation in healthy oldest old. Mech. Aging and Dev. 129, 638-641 https://doi.org/10.1016/j.mad.2008.07.004
  22. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300 https://doi.org/10.1093/geronj/11.3.298
  23. Harshman, L. G. and Haberer, B. A. (2000). Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster. J. Gerontol. A 55, B415-B417 https://doi.org/10.1093/gerona/55.9.B415
  24. Horne, B. D., May, H. T., Anderson, J. L., Kfoury, A. G., Bailey, B. M., McClure, B. S., Renlund, D. G., Lappe, D. L., Carlquist, J. F., Fisher, P. W., Pearson, R. R., Bair, T. L., Adams, T. D., Muhlestein, J. B. and Intermountain Heart Collaborative Study (2008). Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Amer. J. Cardiol. 102, 814-819 https://doi.org/10.1016/j.amjcard.2008.05.021
  25. Horton, Jr. W. E., Bennion, P. and Yang, L. (2006). Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J. Musculoskelet. Neuronal Interact. 6, 379-381
  26. Joeng, K. S., Song, E. J., Lee, K. J. and Lee, J. (2004). Long lifespan in worms with long telomeric DNA. Nature Genetics 36, 607-611 https://doi.org/10.1038/ng1356
  27. Joyner, M. J. (2008). Viewpoint: not so fast: Intrinsic heart rate vs. $\beta$-adrenergic responsiveness in the aging human heart. J. Appl. Physiol. 105, 3-4 https://doi.org/10.1152/japplphysiol.90645.2008
  28. Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., McCord, R. A., Ongaigui, K. C. L., Boxer, L. D., Chang, H. Y. and Chua, K. F. (2008). SIRT6 links histone H3 lysine 9 deacetylation to NF-$\kappa$B-dependent gene expression and organismal life span. Cell 136, 62-74 https://doi.org/10.1016/j.cell.2008.10.052
  29. Kim, S. K. (2007). Common aging pathways in worms, flies, mice and humans. J. Exper. Biol. 210, 1607-1612 https://doi.org/10.1242/jeb.004887
  30. Kirkwood, T. B. L. (2005). Understanding the odd science of aging. Cell 120, 437-447 https://doi.org/10.1016/j.cell.2005.01.027
  31. Kirkwood, T. B. L. (2008). A systematic look at an old problem. Nature 451, 644-647 https://doi.org/10.1038/451644a
  32. Kirkwood, T. B. L. and Holliday, R. (1979). The evolution of ageing and longevity. Proc. R. Soc. Lond. B Biol. Sci. 205, 531-546 https://doi.org/10.1098/rspb.1979.0083
  33. Kriete, A. and Mayo, K. L. (2009). Atypical pathways of NF kappaB activation and aging. Exp. Gerontol. 44, 250-255 https://doi.org/10.1016/j.exger.2008.12.005
  34. Lee, J. H., O'Keefe, J. H., Bell, D., Hensrud, D. D. and Holick, M. F. (2008). Vitamin D deficiency: An important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 52, 1949-1956 https://doi.org/10.1016/j.jacc.2008.08.050
  35. Lips, P. (2006). Vitamin D physiology. Prog. Biophys. Mol. Biol. 92, 4-8 https://doi.org/10.1016/j.pbiomolbio.2006.02.016
  36. Ljubuncic, P. and Reznick, A. Z. (2009). The evolutionary theories of aging revisited-a mini-review. Gerontol. 55, 205-216 https://doi.org/10.1159/000200772
  37. Llewellyn, D. J., Langa, K. and Lang, I. (2009). Serum 25-hydroxyvitamin D concentration and cognitive impairment. J. Geriatr. Psychiatry. Neurol. (online)
  38. Medawar, P. B. (1952). An Unsolved Problem of Biology. London, H.K. Lewis
  39. Mele, J., Van Remmen, H., Vijg, J. and Richardson, A. (2006). Characterization of transgenic mice that overexpress both copper zinc superoxide dismutase and catalase. Antioxid. Redox. Signal. 8, 628-638 https://doi.org/10.1089/ars.2006.8.628
  40. Monnet-Tschud, F., Zurich, M. G., Boschat, C., Corbaz, A. and Honegger, P. (2006). Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health 21, 105-117
  41. North, B. and Verdin, E. (2004). Sirtuins: Sir2-related NADdependent protein deacetylases. Genome Biol. 5, 224-235 https://doi.org/10.1186/gb-2004-5-5-224
  42. Ornish, D., Lin, J., Daubenmier, J., Weidner, G., Epel, E., Kemp, C., Jesus, M., Magbanua, M., Marlin, R., Yglecias, L., Carroll, P. R. and Blackburn, E. H. (2008). Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet 9, 1048-1057 https://doi.org/10.1016/S1470-2045(08)70234-1
  43. Pamplona, R. (2008). Membrane phospholipids, lipo-oxidative damage and molecular integrity: a causal role in aging and longevity. Biochim. Biophys. Acta 1777, 1249-1262 https://doi.org/10.1016/j.bbabio.2008.07.003
  44. Parrinello, S., Coppe, J. P., Krtolica, A. and Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts can alter epithelial cell differentiation. J. Cell Sci. 118, 485-496 https://doi.org/10.1242/jcs.01635
  45. Perez, V. I., Van Remmen, H., Bokov, A., Epstein, C. J., Vijg, J. and Richardson, A. (2009). The over-expression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8, 73-75 https://doi.org/10.1111/j.1474-9726.2008.00449.x
  46. Perez-Rivero, G., Ruiz-Torres, M. P., Díez-Marques, M. L., Canela, A., Lopez-Novoa, J. M., Rodriguez-Puyol, M., Blasco, M. A. and Rodriguez-Puyol, D. (2008). Telomerase deficiency promotes oxidative stress by reducing catalase activity. Free Radic. Biol. Med. 45, 1243-1251 https://doi.org/10.1016/j.freeradbiomed.2008.07.017
  47. Richards, J. B., Valdes, A. M., Gardner, J. P., Paximadas, D., Kimura, M., Nessa, A., Lu, X., Surdulescu, G. L., Swaminathan, R., Spector, T. D. and Aviv, A. (2007). Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 86, 1420-1425 https://doi.org/10.1093/ajcn/86.5.1420
  48. Sansoni, P., Vescovini, R., Fagnoni, F., Biasini C., Zanni, F., Zanlari, L., Telera, A., Lucchini, G., Passeri, G., Monti, D., Franceschi, C. and Passeri, M. (2008). The immune system in extreme longevity. Exp. Gerontol. 43, 61-65 https://doi.org/10.1016/j.exger.2007.06.008
  49. Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C. and Rabinovitch, P. S. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911 https://doi.org/10.1126/science.1106653
  50. Sinclair, D. A. (2005). Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002 https://doi.org/10.1016/j.mad.2005.03.019
  51. Steinbrenner, H. and Sies H. (2009). Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta. Mar 5 (In press) https://doi.org/10.1016/j.bbagen.2009.02.014
  52. Varady, K. A., Roohk, D. J., McEvoy-Hein, B. K., Gaylinn, B. D., Thorner, M. O. and Hellerstein, M. K. (2008). Modified alternate-day fasting regimens reduce cell proliferation rates to a similar extent as daily calorie restriction in mice. FASEB J. 22, 2090-2096 https://doi.org/10.1096/fj.07-098178
  53. Vijg, J., Maslov, A.Y. and Suh, Y. (2008). Aging: a sirtuins shake-up? Cell 135, 797-798 https://doi.org/10.1016/j.cell.2008.11.008
  54. Warren, L. A. and Rossi, D. J. (2009). Stem cells and aging in the hematopoietic system. Mech. Aging Dev. 130, 46-53 https://doi.org/10.1016/j.mad.2008.03.010
  55. Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398-411 https://doi.org/10.2307/2406060
  56. Witte, A. V., Fobker, M., Gellner, R., Knect, S. and Floel, A. (2009). Caloric restriction improves memory in elderly humans. Proc. Natl. Acad. Sci. USA. 106, 1255-1260 https://doi.org/10.1073/pnas.0808587106

Cited by

  1. Diphlorethohydroxycarmalol attenuated cell damage against UVB radiation via enhancing antioxidant effects and absorbing UVB ray in human HaCaT keratinocytes vol.36, pp.2, 2013, https://doi.org/10.1016/j.etap.2013.06.010
  2. Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes vol.24, pp.3, 2016, https://doi.org/10.4062/biomolther.2015.139
  3. Enzymatic Synthesis of α-Glucosides of Resveratrol with Surfactant Activity vol.353, pp.7, 2011, https://doi.org/10.1002/adsc.201000968
  4. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum against Ultraviolet B–Irradiated Damage in Human Keratinocytes vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12118146
  5. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes vol.22, pp.2, 2014, https://doi.org/10.4062/biomolther.2014.006
  6. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress vol.28, pp.6, 2012, https://doi.org/10.1111/phpp.12010
  7. Photo-protective properties of Lomentaria hakodatensis yendo against ultraviolet B radiation-induced keratinocyte damage vol.17, pp.6, 2012, https://doi.org/10.1007/s12257-012-0336-3
  8. Photoprotective effect of Undaria crenata against ultraviolet B-induced damage to keratinocytes vol.116, pp.2, 2013, https://doi.org/10.1016/j.jbiosc.2013.02.003
  9. Royal Jelly Increases Collagen Production in Rat Skin After Ovariectomy vol.15, pp.6, 2012, https://doi.org/10.1089/jmf.2011.1888
  10. Chondracanthus tenellus (Harvey) hommersand extract protects the human keratinocyte cell line by blocking free radicals and UVB radiation-induced cell damage vol.48, pp.10, 2012, https://doi.org/10.1007/s11626-012-9564-2
  11. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes vol.83, 2012, https://doi.org/10.1016/j.ecoenv.2012.06.010
  12. Empetrum nigrumvar.japonicumExtract Suppresses Ultraviolet B-Induced Cell Damage via Absorption of Radiation and Inhibition of Oxidative Stress vol.2013, 2013, https://doi.org/10.1155/2013/983609
  13. Photo-protective effect of Polysiphonia morrowii Harvey against ultraviolet B radiation-induced keratinocyte damage vol.55, pp.2, 2012, https://doi.org/10.1007/s13765-012-1019-7
  14. An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB) Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes vol.10, pp.12, 2012, https://doi.org/10.3390/md10122826