DOI QR코드

DOI QR Code

COMMUTATIVITY AND HYPONORMALITY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACE

  • Lu, Yufeng ;
  • Liu, Chaomei
  • Published : 2009.05.01

Abstract

In this paper we give necessary and sufficient conditions that two Toeplitz operators with monomial symbols acting on the weighted Bergman space commute. We also present necessary and sufficient conditions for the hyponormality of Toeplitz operators with some special symbols on the weighted Bergman space. All the results are stated in terms of the Mellin transform of the symbol.

Keywords

weighted Bergman space;Toeplitz operator;Mellin transform;commutativity;hyponormality

References

  1. S. Axler and Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12 https://doi.org/10.1007/BF01194925
  2. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963), 89–102
  3. J. B. Conway, Functions of One Complex Variable, Second edition. Graduate Texts in Mathematics, 11. Springer-Verlag, New York-Berlin, 1978
  4. C. C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of some recent results in operator theory, Vol. I, 155–167, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988
  5. C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812
  6. R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 150 (2001), no. 712, x+65 pp
  7. P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), no. 3, 489–493
  8. D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153–4174
  9. C. X. Gu, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3275–3298 https://doi.org/10.1090/S0002-9947-02-03001-5
  10. I. S. Hwang, Hyponormal Toeplitz operators on the Bergman space, J. Korean Math. Soc. 42 (2005), no. 2, 387–403 https://doi.org/10.4134/JKMS.2005.42.2.387
  11. I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247–261 https://doi.org/10.1007/s002080050260
  12. I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2461–2474
  13. Y. J. Lee, Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces, Canad. Math. Bull. 41 (1998), no. 2, 129–136
  14. I. Louhichi and E. Strouse and Elizabeth and L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integral Equations Operator Theory 54 (2006), no. 4, 525–539 https://doi.org/10.1007/s00020-005-1369-1
  15. T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753–767
  16. H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Thesis, Purdue University, 1992
  17. D. Sarason, Generalized interpolation in H$^{\infty}$, Trans. Amer. math. Soc. 127 (1967), 179–203
  18. K. Stroethof, Essentially commuting Toeplitz operators with harmonic symbols, Canad. J. Math. 45 (1993), no. 5, 1080–1093
  19. D. Zheng, Commuting Toeplitz operators with pluriharmonic symbols, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1595–1618
  20. K. H. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376–381 https://doi.org/10.1007/BF01299971
  21. B. R. Choe, H. Koo, and Y. J. Lee, Commuting Toeplitz operators on the polydisk, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727–1749 https://doi.org/10.1090/S0002-9947-03-03430-5
  22. Zeljko Cuckovic and N. V. Rao, Mellin transform, monomial symbols, and commuting Toeplitz operators, J. Funct. Anal. 154 (1998), no. 1, 195–214 https://doi.org/10.1006/jfan.1997.3204
  23. C. X. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148 https://doi.org/10.1006/jfan.1994.1102
  24. Y. F. Lu, Commuting of Toeplitz operators on the Bergman spaces of the bidisc, Bull. Austral. Math. Soc. 66 (2002), no. 2, 345–351
  25. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions with an Account of the Principal Transcendental Functions, Fourth edition. Reprinted Cambridge University Press, New York 1962
  26. S. Axler, Z. Cuckovic, and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951–1953 https://doi.org/10.1090/S0002-9939-99-05436-2

Cited by

  1. Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-335
  2. Hyponormality of Toeplitz operators with polynomial symbols on the weighted Bergman space vol.6, pp.2, 2017, https://doi.org/10.1007/s40065-017-0170-8
  3. HYPONORMALITY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACES vol.35, pp.2, 2013, https://doi.org/10.5831/HMJ.2013.35.2.311
  4. Hyponormal Toeplitz operators on the polydisk vol.28, pp.2, 2012, https://doi.org/10.1007/s10114-012-9767-1
  5. Hyponormal Toeplitz operators with non-harmonic algebraic symbol pp.1664-235X, 2019, https://doi.org/10.1007/s13324-018-00279-2