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SPECIFIC EXAMPLES OF EXPONENTIAL WEIGHTS

HeeSun Jung and Ryozi Sakai

Abstract. Let Q ∈ C2 : R → [0,∞) be an even function. Then we will
consider the exponential weights w(x) = exp(−Q(x)) in the weight class
from [2]. In the paper, we will give some relations among exponential
weights in this class and introduce a new weight subclass. In addition,
we will investigate some properties of the typical and specific weights in
these weight classes.

1. Introduction and results

Let Q ∈ C2 : R → [0,∞) be an even function and w(x) = exp(−Q(x)) be
such that for all n = 0, 1, 2, . . .,

∫ ∞

0

xnw2(x)dx < ∞.

A function f : R→ [0,∞) is said to be quasi-increasing (quasi-decreasing) if
there exists C > 0 such that f(x) ≤ Cf(y)(f(x) ≥ Cf(y)) for 0 < x < y. For
any two sequences {bn}∞n=1 and {cn}∞n=1 of nonzero real numbers (or functions),
we write bn

<∼ cn if there exists a constant C > 0 independent of n(or x) such
that bn ≤ Ccn for n large enough and bn ∼ cn if bn

<∼ cn and bn
<∼ cn.

Throughout the sections, C, C1, C2, . . . denote positive constants indepen-
dent of n, x, t. The same symbol does not necessarily denote the same constant
in different occurrences.

We shall be interested in the following subclass of weights from [2].

Definition 1.1. Let Q(x) : R → [0,∞) be even and satisfy the following
properties:

(a) Q′(x) is continuous in R, with Q(0) = 0.
(b) Q′′(x) exists and is positive in R\{0}.
(c)

lim
x→∞

Q(x) = ∞.
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(d) The function

T (x) :=
xQ′(x)
Q(x)

, x 6= 0

is quasi-increasing in (0,∞) with

T (x) ≥ Λ > 1, x ∈ R\{0}.
(e) There exists C1 > 0 such that

(1.1)
Q′′(x)
|Q′(x)| ≤ C1

|Q′(x)|
Q(x)

, a.e. x ∈ R\{0}.

Then we write w(x) ∈ F(C2). If there also exist a compact subinterval J(3 0)
of R and C2 > 0 such that

Q′′(x)
|Q′(x)| ≥ C2

|Q′(x)|
Q(x)

, a.e. x ∈ R\J,

then we write w(x) ∈ F(C2+).

Remark 1.2. (a) The simplest of the above definition is when T (x) is bounded
in R. This is the so-called Freud weight case. Typical example then would be

Q(x) = |x|α, α > 1.

(b) A more general example satisfying the above conditions is

Ql,α(x) := expl(|x|α)− expl(0),

where α > 1 and l ≥ 0. Here we let exp0(x) := x and for l ≥ 1, expl(x) :=
exp(exp(· · · (exp(; )) · · · )) denotes the l th iterated exponential. In particu-
lar, expl(x) = exp(expl−1(x)). We estimate the details of these examples in
Section 3.

For the future works such as the differential relation of orthogonal polyno-
mials with respect to the exponential weights, we need further assumptions
with respect to Q(x) (see [1, 3]). In the following, we introduce a new weight
subclass of the weight class in Definition 1.1.

Definition 1.3. Let w(x) = exp(−Q(x)) ∈ F(C2+) and ν be a positive inte-
ger. Assume that Q(x) is ν-times continuously differentiable on R and satisfies
the followings;

(i) Q(ν+1)(x) exists and Q(i)(x), i = 0, 1, . . . , ν+1 are nonnegative for x > 0.
(ii) There exist positive constants Ci > 0 such that for x ∈ R\{0}

(1.2) |Q(i+1)(x)| ≤ Ci|Q(i)(x)| |Q
′(x)|

Q(x)
, i = 2, . . . , ν.

(iii) There exist constants 0 ≤ δ < 1 and c1 > 0 such that on (0, c1]

(1.3) Q(ν+1)(x) ≤ C

(
1
x

)δ

.

Then we write w(x) ∈ Fν(C2+).
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The following theorems give some relations of theses exponential weights.

Theorem 1.4. Let w(x) = exp(−R(x)) ∈ F(C2). Then
(a) if Q(x) = exp(R(x)) − 1, then w(x) = exp(−Q(x)) belongs to F(C2).

Moreover, if w(x) = exp(−R(x)) ∈ F(C2+), then w(x) = exp(−Q(x))
belongs to F(C2+).

(b) if Q(x) = (1+|x|)R(x)−1, then w(x) = exp(−Q(x)) belongs to F(C2+).
(c) if Q(x) = (1 + R(x))R(x) − 1, then w(x) = exp(−Q(x)) belongs to

F(C2+).

Remark 1.5. For all cases of Theorem 1.4
Q′′(x)
Q′(x)

/
Q′(x)
Q(x)

→ 1, as x →∞.

Theorem 1.6. Let ν be a positive integer and w(x) = exp(−R(x)) ∈ Fν(C2+).
Then w(x) = exp(−Q(x)) belongs to Fν(C2+), where Q(x) = exp(R(x))− 1.

In the following section, we will prove the results in Section 1. In addition,
we will investigate some properties of the typical and specific weights in the
weight classes of Definitions 1.1 and 1.3.

2. Proofs of theorems

In this section we will prove the theorems of Section 1.

Lemma 2.1. For t > 1,
t ln t

t− 1
is increasing and

(2.4)
t ln t

t− 1
> 1.

Proof of Theorem 1.4. First, we start by letting

(2.5) TR(x) :=
xR′(x)
R(x)

≥ ΛR > 1

since w(x) = exp(−R(x)) ∈ F(C2).

(a) Let S(x) = exp(R(x)) and x > 0. Then since

Q′(x) = R′(x)S(x), and Q′′(x) =
(
R′′(x) + R′2(x)

)
S(x),

by the conditions of R(x) and S(x) we see that (a), (b), and (c) of Defini-
tion 1.1 are satisfied. For T (x), we know that TR(x) is quasi-increasing and
S(x) ln S(x)/(S(x)− 1) is increasing by Lemma 2.1. Therefore, since

T (x) =
xQ′(x)
Q(x)

=
xR′(x)S(x)
S(x)− 1

= TR(x)
S(x) ln S(x)

S(x)− 1
,

T (x) is quasi-increasing. By (2.4) and (2.5) we have

T (x) = TR(x)
S(x) ln S(x)

S(x)− 1
> TR(x) ≥ ΛR > 1.
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On the other hand, we have

(2.6)
Q′′(x)
Q′(x)

=
R′′(x) + R′2(x)

R′(x)
<∼ R′(x)

R(x)
+ R′(x) <∼ Q′(x)

Q(x)
,

because we know from (2.4) that

(2.7)
Q′(x)
Q(x)

=
R′S(x)

S(x)− 1
>

R′(x)
R(x)

and
Q′(x)
Q(x)

=
R′S(x)

S(x)− 1
> R′(x).

Therefore, we have w(x) = exp(−Q(x)) ∈ F(C2). Now, suppose w(x) =
exp(−R(x)) ∈ F(C2+). Then there exists a positive constant c such that for
x ≥ c > 0, we have by (2.6) and (2.7)

Q′(x)
Q(x)

∼ R′(x) ≤ R′(x)
R(x)

+ R′(x) <∼ R′′(x)
R′(x)

+ R′(x) =
Q′′(x)
Q′(x)

.

Therefore, w(x) = exp(−Q(x)) ∈ F(C2+).

(b) Let S(x) = (1 + |x|)R(x) and x > 0. Then

Q′(x) = S′(x) = S(x)f(x) and Q′′(x) =
(
f ′(x) + f2(x)

)
S(x),

where

(2.8) f(x) = R′(x) ln(1 + x) +
R(x)
1 + x

.

Therefore, by the conditions of R(x) and f(x) we see that (a), (b), and (c) of
Definition 1.1 are satisfied. To prove T (x) is quasi-increasing in (0,∞), we let

T (x) =
xQ′(x)
Q(x)

=
S(x)

S(x)− 1

(
xR′(x) ln(1 + x) + x

R(x)
1 + x

)

= TR(x)
S(x) ln S(x)

S(x)− 1
+

S(x)R(x)
S(x)− 1

x

1 + x

:= A(x) + B(x).

Since for x > 0
0 <

x

(1 + x) ln(1 + x)
< 1,

from Lemma 2.1 we have for 0 < x < 1

(2.9) 0 < B(x) =
S(x) ln S(x)

S(x)− 1
x

(1 + x) ln(1 + x)
<

S(1) ln S(1)
S(1)− 1

and since for x ≥ 1
S(x)

S(x)− 1
x

1 + x
∼ 1,

we have

(2.10) B(x) ∼ R(x).

Now, let 0 < x ≤ y. Then we know that from Lemma 2.1 and (2.5)

(2.11) A(y) >∼ A(x) ≥ ΛR > 1.
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If 0 < x < 1, then we have from (2.9) and (2.11)

T (x) = A(x) + B(x) ≤ A(x) +
S(1) ln S(1)

S(1)− 1
<∼ A(y) <∼ T (y).

If x ≥ 1, then since R(x) is increasing, we have by (2.10) and (2.11)

T (x) = A(x) + B(x) ∼ A(x) + R(x)
<∼ A(y) + R(y) ∼ A(y) + B(y) = T (y).

Therefore, we have for 0 < x ≤ y

T (x) <∼ T (y),

that is, T (x) is quasi-increasing for x > 0. Moreover, we have

T (x) ≥ A(x) ≥ ΛR > 1.

On the other hand, we can see that Q′′(x) > 0, because we know from (2.8)

(2.12) f ′(x) = R′′(x) ln(1 + x) +
R(x) (2TR(x)− 1) + 2R′(x)

(1 + x)2
> 0.

For 0 < x < 1, we know that

(2.13) ln(1 + x) ∼ x and
1

1 + x
∼ 1.

Since for 0 < x < 1

ln S(x) = R(x) ln(1 + x) ∼ xR(x),

there exist positive constants C1 and C2 such that

exp(C1xR(x)) ≤ S(x) ≤ exp(C2xR(x)).

Therefore, we have

exp(C1xR(x))− 1 ∼ exp(C2xR(x))− 1 ∼ xR(x).

So, we obtain that for 0 < x < 1

(2.14) S(x)− 1 ∼ xR(x).

From (2.8), (2.12), and (2.13), we obtain that for 0 < x < 1

(2.15) f(x) ∼ xR′(x) + R(x)

and

(2.16) f ′(x) ∼ xR′′(x) + 2xR′(x)−R(x) + 2R′(x).

Then we have by (2.14) and (2.15)

Q′(x)
Q(x)

= f(x) +
1

S(x)− 1
f(x)(2.17)

∼ f(x) +
xR′(x) + R(x)

xR(x)
∼ f(x) +

R′(x)
R(x)

+
1
x
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and by (2.15) and (2.16)

Q′′(x)
Q′(x)

= f(x) +
f ′(x)
f(x)

(2.18)

∼ f(x) +
xR′′(x) + 2xR′(x)−R(x) + 2R′(x)

xR′(x) + R(x)
<∼ f(x) +

R′′(x)
R′(x)

+
1
x

<∼ f(x) +
R′(x)
R(x)

+
1
x

.

Therefore, we have for 0 < x < 1
Q′′(x)
Q′(x)

<∼ Q′(x)
Q(x)

.

Now, we consider x ≥ 1. Then

(2.19) ln(1 + x) ∼ ln x and
1

1 + x
∼ 1

x
.

From (2.8), and (2.12), and (2.19), we obtain that

(2.20) f(x) ∼ R′(x) ln x +
R(x)

x

>∼ R′(x)
R(x)

and

(2.21) f ′(x) ∼ R′′(x) ln x +
R′(x)

x
.

Therefore, we have by (2.17)

Q′(x)
Q(x)

∼ f(x)

and by (2.18), (2.20) and (2.21),

f(x) <∼ Q′′(x)
Q′(x)

∼ f(x) +
R′′(x) ln x + R′(x)/x

R′(x) ln x + R(x)/x

<∼ f(x) +
R′′(x)
R′(x)

+
R′(x)
R(x)

<∼ f(x) +
R′(x)
R(x)

<∼ f(x).

Thus, we have for x ≥ 1,
Q′′(x)
Q′(x)

∼ Q′(x)
Q(x)

∼ f(x).

Therefore, we obtain the result.

(c) This part is similar to the proof of (b). Let S(x) = (1 + R(x))R(x) and
x > 0. Then

Q′(x) = S′(x) = S(x)f(x) and Q′′(x) =
(
f ′(x) + f2(x)

)
S(x),

where

(2.22) f(x) = R′(x) ln(1 + R(x)) +
R′(x)R(x)
1 + R(x)

.
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So, we have

T (x) =
xQ′(x)
Q(x)

= TR(x)
S(x) ln S(x)

S(x)− 1
+

S(x)xR′(x)
S(x)− 1

R(x)
1 + R(x)

:= A(x) + B(x).

Since for x > 0

0 <
xR′(x)

(1 + R(x)) ln(1 + R(x))
< TR(x),

from Lemma 2.1 we have for 0 < x < 1

0 < B(x) =
S(x) ln S(x)

S(x)− 1
xR′(x)

(1 + R(x)) ln(1 + R(x))
<∼ S(1) ln S(1)

S(1)− 1
TR(1)

and since for x ≥ 1
S(x)

S(x)− 1
R(x)

1 + R(x)
∼ 1,

we have
B(x) ∼ xR′(x).

Then by the same argument as the proof of Theorem 1.4 (b) we can show that
T (x) is quasi-increasing for x > 0 and

T (x) ≥ ΛR > 1.

Also, we can see that Q′′(x) > 0 because
(2.23)

f ′(x) = R′′(x) ln(1+R(x))+R′′(x)R(x) + 2R′2(x) + R′′(x)R2(x) + R′2(x)R(x)
(1 + R(x))2

> 0.

Let x0 be the positive constant satisfying R(x0) = 1. Then for 0 < x < x0, we
know that

(2.24) ln(1 + R(x)) ∼ R(x) and
1

1 + R(x)
∼ 1

and similarly to the proof of (b),

(2.25) S(x)− 1 ∼ R2(x).

From (2.22), (2.23), and (2.24), we obtain that for 0 < x < x0

(2.26) f(x) ∼ R(x)R′(x)

and

(2.27) f ′(x) ∼ R′′(x)R(x) + R′2(x) + R′2(x)R(x).

Then we have by (2.25) and (2.26)

Q′(x)
Q(x)

= f(x) +
1

S(x)− 1
f(x)(2.28)

∼ f(x) +
R(x)R′(x))

R2(x)
∼ f(x) +

R′(x)
R(x)
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and by (2.26) and (2.27)

Q′′(x)
Q′(x)

= f(x) +
f ′(x)
f(x)

(2.29)

∼ f(x) +
R′′(x)R(x) + R′2(x) + R′(x)2R(x)

R(x)R′(x)

∼ f(x) +
R′(x)
R(x)

.

Therefore, we have for 0 < x < x0

Q′′(x)
Q′(x)

∼ Q′(x)
Q(x)

.

We consider x ≥ x0. Then

(2.30) ln(1 + R(x)) ∼ ln R(x) and
1

1 + R(x)
∼ 1

R(x)
.

From (2.22), (2.23), and (2.30), we obtain that for x ≥ x0

(2.31) f(x) ∼ R′(x) ln R(x) >∼ R′(x)
R(x)

and

(2.32) f ′(x) ∼ R′′(x) ln R(x) +
R′2(x)
R(x)

.

Then we obtain by (2.28)
Q′(x)
Q(x)

∼ f(x)

and by (2.29), (2.31), and (2.32),

f(x) <∼ Q′′(x)
Q′(x)

∼ f(x) +
R′′(x) ln R(x) + R′2(x)/R(x)

R′(x) ln R(x)
<∼ f(x) +

R′′(x)
R′(x)

+
R′(x)

R(x) ln R(x)
<∼ f(x) +

R′(x)
R(x)

<∼ f(x).

Thus, we have for x ≥ x0,

Q′′(x)
Q′(x)

∼ Q′(x)
Q(x)

∼ f(x).

Therefore, we obtain the result. ¤

Proof of Theorem 1.6. Let S(x) = exp(R(x)). Then since for k = 1, 2, . . . , ν +
1,

(2.33) Q(k)(x) =
k−1∑

i=0

(
k − 1

i

)
R(i+1)(x)S(k−1−i)(x),
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by the inductive method, we have that Q(k)(x), k = 0, 1, . . . , ν are continuous
on R, Q(k)(x) > 0, k = 0, 1, . . . , ν + 1, and

Q(k+1)(x)
Q(k)(x)

=
∑k

i=0

(
k
i

)
R(i+1)(x)S(k−i)(x)

∑k−1
i=0

(
k−1

i

)
R(i+1)(x)S(k−1−i)(x)

=
∑k

i=0

(
k
i

)
R(i+1)(x)S(k−i)(x)

∑k
i=1

(
k−1
i−1

)
R(i)(x)S(k−i)(x)

=
R′(x)S(k)(x)∑k

i=1

(
k−1
i−1

)
R(i)(x)S(k−i)(x)

+
∑k

i=1

(
k
i

)
R(i+1)(x)S(k−i)(x)

∑k
i=1

(
k−1
i−1

)
R(i)(x)S(k−i)(x)

<∼ S(k)(x)
S(k−1)(x)

+
k∑

i=1

R(i+1)(x)
R(i)(x)

<∼ R′(x) +
k∑

i=1

R(i+1)(x)
R(i)(x)

<∼ R′(x) +
R′(x)
R(x)

<∼ Q′(x)
Q(x)

, k = 1, 2, . . . , ν.

For x ∈ (0, c], since R(ν+1)(x) <∼ x−δ, 0 ≤ δ < 1, we have by (2.33)

Q(ν+1)(x) =
ν∑

i=0

(
ν

i

)
R(i+1)(x)S(ν−i)(x)

= R(ν+1)(x)S(x) +
ν−1∑

i=0

(
ν

i

)
R(i+1)(x)S(ν−i)(x)

<∼ R(ν+1)(x)O(1) + O(1) <∼ x−δ

because R(i)(x) and S(i)(x), i = 0, 1, . . . , ν are increasing. Therefore, the result
is proved. ¤

Proof of Remark 1.5. Case of Q(x) = exp(R(x))− 1 :

Q′′(x)
Q′(x)

/
Q′(x)
Q(x)

= 1 + O(1/R(x)).

Case of Q(x) = (1 + R(x))R(x) − 1 : Here, S(x) = (1 + R(x))R(x) and f(x) =
R′(x) ln(1 + R(x)) + R′(x)R(x)

1+R(x) . Then since

S′′(x)
S′(x)

/
S′(x)
S(x)

= 1 +
f ′

f2
= 1 + O

(
1

R(x) ln R(x)

)
→ 1, as x →∞,

we have

lim
x→∞

Q′′(x)
Q′(x)

/
Q′(x)
Q(x)

= lim
x→∞

S′′(x)
S′(x)

/
S′(x)
S(x)

= 1.

Case of Q(x) = (1+ |x|)R(x)− 1 : The proof of this case is similar to the above
case. ¤
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3. Examples of exponential weights

Now we will consider some typical examples of F(C2+). Define for α > 1
and l ≥ 1,

(3.34) Ql,α(x) := expl(|x|α)− expl(0).

More precisely, define for α + m > 1, m ≥ 0, l ≥ 1 and α ≥ 0,

(3.35) Ql,α,m(x) := |x|m(expl(|x|α)− α∗ expl(0)),

where α∗ = 0 if α = 0, otherwise α∗ = 1 and define

(3.36) Qα(x) := (1 + |x|)|x|α − 1, α > 1.

In the following, we consider the exponential weights with the exponents
Ql,α,m(x).

Theorem 3.1. Let ν be a positive integer. Let m + α− ν > 0. Then
(a) w(x) = exp(−Ql,α,m(x)) belongs to Fν(C2+).
(b) If l ≥ 2 and α > 0, then there exists a constant c1 > 0 such that

Q′l,α,m(x)/Ql,α,m(x) is quasi-increasing on (c1,∞).
(c) When l = 1, if α ≥ 1, then there exists a constant c2 > 0 such that

Q′l,α,m(x)/Ql,α,m(x) is quasi-increasing on (c2,∞) and if 0 < α < 1, then
Q′l,α,m(x)/Ql,α,m(x) is quasi-decreasing on (c2,∞).

(d) When l = 1 and 0 < α < 1, Q
(ν+1)
l,α,m (x) is non-decreasing on a certain

positive interval (c2,∞).

Proof. (a) Let Rl(x) := expl(|x|α) and x > 0. Suppose
∏0

j=1 Rj(x) := 1 and∏−1
j=1 Rj(x) := 0 . Then since

(3.37) Q′(x) = mxm−1(Rl(x)−Rl(0)) + αxm+α−1
l∏

j=1

Rj(x),

we have

Q′(x)
Q(x)

=
1
x

(
m +

αxα
∏l

j=1 Rj(x)
Rl(x)−Rl(0)

)
.

Therefore we have

T (x) =
xQ′(x)
Q(x)

= m +
αxα

∏l
j=1 Rj(x)

Rl(x)−Rl(0)
.

Let Sl(u) = Rl(x) for u = xα. Then

u

l∏

j=1

Sj(u)− Sl(u) + Sl(0)



′

= u




l∏

j=1

Sj(u)



′

> 0
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and 
u

l∏

j=1

Sj(u)− Sl(u) + Sl(0)




∣∣∣∣∣
u=0

= 0,

so we have

(3.38)
u

∏l
j=1 Sj(u)

Sl(u)− Sl(0)
=

xα
∏l

j=1 Rj(x)
Rl(x)−Rl(0)

≥ 1.

Therefore we have
T (x) ≥ m + α > 1.

Here,

(3.39)
xα

∏l
j=1 Rj(x)

Rl(x)−Rl(0)
→ 1 as x → 0+

and for sufficiently large x > 0

(3.40)
xα

∏l
j=1 Rj(x)

Rl(x)−Rl(0)
∼ xα

l−1∏

j=1

Rj(x).

Then by similar method to the proof of Theorem 1.4 (b) we know that T (x) is
quasi-increasing for x > 0. Denote for α ∈ R and an integer k ≥ 0,

αPk := α(α− 1) · · · (α− k + 1) and αP0 := 1.

Then we have the following lemma.

Lemma 3.2. For k ≥ 1 and x > 0,

Q
(k)
l,α,m(x) = mPk · xm−k · (Rl(x)−Rl(0))(3.41)

+ (m+αPk − mPk)xm−k+α
l∏

j=1

Rj(x) + Ek(x),

where E1(x) := 0 and if we let for k ≥ 2

(3.42) gk(x) := (m+αPk−1 − mPk−1) · xm−k+1+α




l∏

j=1

Rj(x)



′

,

then

(3.43) Ek(x) = g
(k−2)
2 (x) + g

(k−3)
3 (x) + · · ·+ g′k−1(x) + gk(x).

Moreover, if m + α− k + 1 > 0, then we have Ek(x) ≥ 0 and

(3.44) Q
(k)
l,α,m(x) ≥ m+αPk · Ql,α,m(x)

xk
.
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Proof. Let x > 0. Since

(3.45) xQ′
l,α,m(x) = mQl,α,m(x) + αxm+α

l∏

j=1

Rj(x),

we see that (3.41) and (3.43) hold for k = 1. Then by the inductive method,
we can easily see that (3.41) and (3.43) hold for all k ≥ 1. First, we know that

m+αPk − mPk ≥ 0 for α ≥ 0, k = 0, 1, . . .. For j = 2, . . . , k, g
(k−j)
j (x) is finite

sum of the terms of AxsF (x) form where A is the product of positive numbers
or the numbers > m+α−k+1, s ≥ m+2α−k, and F (x) is a function by sum
of products of Rj(x). Therefore, if m+α−k +1 > 0, then since g

(k−j)
j (x) > 0,

j = 2, . . . , k, we see Ek(x) ≥ 0. Thus, if m + α− k + 1 > 0, we have by (3.41)
and (3.38)

Q
(k)
l,α,m(x) ≥ mPk · xm−k · (Rl(x)−Rl(0)) + (m+αPk − mPk)xm−k+α

l∏

j=1

Rj(x)

= m+αPkxm−k(Rl(x)−Rl(0)) = m+αPk
Ql,α,m(x)

xk
.

Therefore, we prove the lemma. ¤

Now, suppose m + α− ν > 0. Then since

lim
x→0+

Ql,α,m(x)/x = 0 = lim
x→0+

Q′l,α,m(x)

and similarly,
lim

x→0−
Ql,α,m(x)/x = 0 = lim

x→0−
Q′

l,α,m(x),

we can see from (3.37) that Q′l,α,m(0) = 0 and Q′
l,α,m(x) is continuous on R.

To use the mathematical induction, suppose Q
(k−1)
l,α,m (0) = 0, 1 ≤ k ≤ ν. Then

if we show
Q

(k)
l,α,m(0) = lim

x→0
Q

(k−1)
l,α,m (x)/x = 0,

then Q
(k)
l,α,m(0) for all 1 ≤ k ≤ ν, because Ql,α,m(0) = Q′

l,α,m(0) = 0. Then
from (3.41),

lim
x→0+

Q
(k−1)
l,α,m (x)/x = lim

x→0+

[
mPk · xm−k · (Rl(x)−Rl(0))

+ (m+αPk − mPk) xm−k+α
l∏

j=1

Rj(x) +
Ek−1(x)

x

]
= 0.

Similarly, limx→0−Q
(k−1)
l,α,m (x)/x = 0. Therefore, we know that Q

(k)
l,α,m(0) = 0,

1 ≤ k ≤ ν. Moreover, from the form of (3.41) we have that Q
(k)
l,α,m(x), 1 ≤ k ≤ ν

are continuous on R. On the other hand, we also know from Lemma 3.2 that
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Q
(i)
l,α,m(x) > 0, i = 0, 1, . . . , ν +1 for x > 0. Now, consider for 0 < x < 1. From

the representation of Ek(x), we know that

Ek(x) = O(xm+2α−k) and Ql,α,m(x) ∼ xm+α.

Then we have from (3.41)

Q
(k)
l,α,m(x) = m+αPk · xm−k · (Rl(x)−Rl(0))

+ (m+αPk − mPk)xm−k+α




l∏

j=1

Rj(x)− Rl(x)−Rl(0)
xα


+Ek(x)

≤ m+αPk
Ql,α,m(x)

xk
+ O(xm+α−k) + O(xm+2α−k).

Consequently, from (3.44), we have for 0 < x < 1

(3.46) Q
(k)
l,α,m(x) ∼ xm+α−k.

Let x ≥ 1. Then since



l∏

j=1

Rj(x)




(i)

∼ xi(α−1)




l−1∏

j=1

Rj(x)




i
l∏

j=1

Rj(x),

we have for gk(x) defined in Lemma 3.2,

g
(i)
k (x) ∼ xm−k+1+α+(i+1)(α−1)




l−1∏

j=1

Rj(x)




i+1
l∏

j=1

Rj(x).

Therefore, we know that k ≥ 2

g
(k−2)
2 (x) ∼ xm+k(α−1)




l−1∏

j=1

Rj(x)




k−1
l∏

j=1

Rj(x)

and for 3 ≤ j ≤ k

g
(k−j)
j (x) = o(1)g(k−2)

2 (x).

Thus, we have for x ≥ 1 by (3.41)
(3.47)

Q
(k)
l,α,m(x) ∼ xm+k(α−1)




l−1∏

j=1

Rj(x)




k−1
l∏

j=1

Rj(x), k = 1, 2, . . . , ν + 1,

since Q
′
l,α,m(x) ∼ xm+α−1

∏l
j=1 Rj(x). Finally, from (3.46) and (3.47) we have

for 0 < x < 1 and k = 1, . . . , ν,

Q
(k+1)
l,α,m (x)

Q
(k)
l,α,m(x)

∼ Q′l,α,m(x)
Ql,α,m(x)

∼ 1
x
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and for x ≥ 1 and k = 1, . . . , ν,

(3.48)
Q

(k+1)
l,α,m (x)

Q
(k)
l,α,m(x)

∼ Q′
l,α,m(x)

Ql,α,m(x)
∼ xα−1




l−1∏

j=1

Rj(x)


 .

Therefore, w(x) = exp(−Ql,α,m(x)) satisfies (ii) of Definition 1.3. Since m +
α − ν − 1 > −1, we know from (3.46) that (iii) of Definition 1.3 is satisfied.
Thus, w(x) = exp(−Ql,α,m(x)) belongs to Fν(C2+).

(b) and (c) : Since from (3.48),

Q′l,α,m(x)
Ql,α,m(x)

∼ xα−1




l−1∏

j=1

Rj(x)


 ,

we have the results.

(d) : From (3.47), we can see the result. ¤
Remark 3.3.

(a) From Theorem 3.1, w(x) = exp(−Ql,α,m(x)) belongs to F(C2+).
(b) The weight w(x) = exp(−Ql,0,m(x)), Ql,0,m(x) = expl(1) · |x|m, m > 1,

is a well known Freud weight satisfying

T (at) = m, and at ∼ t
1
m .

(c) When l = 0, similarly to (b), the weight w(x) = exp(−Q0,α,m(x)),
Q0,α,m(x) = |x|m+α, m + α > 1, is also a well known Freud weight.

(d) From Theorem 1.4 (b), we can see that w(x) = exp(−Qα(x)), α > 1
defined in (3.36), belongs to F(C2+).

(e) For l ≥ 1 and α > 0,

lim
x→∞

Q′′l,α,m(x)
Q′l,α,m(x)

/
Q′l,α,m(x)
Ql,α,m(x)

= 1,
Q′′l,0,m(x)
Q′l,0,m(x)

/
Q′l,0,m(x)
Ql,0,m(x)

= 1− 1
m

and for α > 0,

lim
x→∞

Q′′α(x)
Q′α(x)

/
Q′α(x)
Qα(x)

= 1.

In the following theorem, we consider the special cases with nonnegative
even integers m and α.

Theorem 3.4. Let l be a positive integer. Let m and α be nonnegative even
integers with m + α > 1. Then w(x) = exp(−Ql,α,m(x)) belongs to Fν(C2+)
for all ν ≥ 1.

Proof. We have already proved for ν < m + α in Theorem 3.1. Moreover,
since m and α are even integers, we know that for any nonnegative integer
k, Q

(k)
l,α,m(x) is continuous on R. Now, we may consider that m and α are

nonnegative integers with α > 0. Let x > 0, m + α ≤ ν, and

Rl,α,m(x) := |x|m expl(|x|α).
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Then we can prove the following representations by the mathematical induction
method. For 1 ≤ k ≤ m,

R
(k)
l,α,m(x) =

k∑
s=0

Ck,s(x)xm−k+sαRl(x).

Suppose m + jα + 1 ≤ k ≤ m + (j + 1)α, j = 0, 1, 2 . . . and let k0 := m + (j +
1)α− k. Then

R
(k)
l,α,m(x) =

k−j∑
s=0

Ck,s(x)xk0+sαRl(x),

where the coefficients functions Ck,s(x) are expressed by

Ck,s(x) =
∑

finite sum


 positive constant ·

∏

finite product with 0≤p≤l−1

Rp(x)


 .

Then for all k ≥ m + α + 1 we know that

Q
(k)
l,α,m(x) = R

(k)
l,α,m(x) ≥ 0.

Consider the case of m + jα + 1 ≤ k ≤ m + (j + 1)α, j = 0, 1, 2 . . .. Then for
0 < x < 1 we know that

R
(k)
l,α,m(x) ∼ xk0 .

Therefore, we have for any k ≥ m + α + 1 and 0 < x < 1,

Q
(k+1)
l,α,m (x)

Q
(k)
l,α,m(x)

∼ xα−1 or 1/x
<∼ 1/x ∼ Q′

l,α,m(x)
Ql,α,m(x)

.

On the other hand,

R
(k)
l,α,m(x) = Ckxm+k(α−1)




l−1∏

j=1

Rj(x)




k

Rl(x) +
∑

finite sum

p(x)F (x)Rl(x),

where Ck > 0, p(x) is a polynomial with nonnegative coefficients, and

F (x) =
l−1∏

j=1

R
sj

j (x)

with 0 ≤ sj ≤ k and 0 ≤ s1 + s2 + · · ·+ sl−1 < (l− 1)k. Then we have for any
k ≥ m + α + 1 and x ≥ 1

Q
(k)
l,α,m(x) = R

(k)
l,α,m(x) ∼ xm+k(α−1)




l−1∏

j=1

Rj(x)




k

Rl(x).

Therefore, we have (3.48). ¤



318 HEESUN JUNG AND RYOZI SAKAI

Let
g(α, x) :=

xα

1 + x
.

Then we know that

dkg(α, x)
dxk

=
k∑

j=0

(
k

j

)
αPk+1

α− j

xα−j

(1 + x)k+1

and if α > k, then dkg(α, x)/dxk > 0 for x > 0.
In the following, we consider the exponential weights with the exponents

Qα(x).

Theorem 3.5. Let ν be a positive integer and α > ν. Then w(x)=exp(−Qα(x))
belongs to Fν(C2+). Moreover, there exists a positive constant c2 > 0 such that
Q′α(x)/Qα(x) is quasi-increasing on (c2,∞).

Proof. Let S(x) = (1 + |x|)xα

and x > 0. Then

Q′α(x) = S′(x) = S(x)f(x),

where

(3.49) f(x) = αxα−1 ln(1 + x) + g(α, x).

Then for k = 0, 1, . . . , ν

f (k)(x) = αPk+1 · xα−k−1 ln(1 + x) +
k∑

j=0

αPj · dk−jg(α− j, x)
dxk−j

> 0.

Since Q′
α(x) is continuous on R, Q′

α(x) = S′(x) = S(x)f(x) > 0, and for
k = 2, 3, . . . , ν + 1

(3.50) Q(k)
α (x) = S(k)(x) =

k−1∑

j=0

(
k

j

)
S(j)(x)f (k−1−j)(x),

we have by the inductive method, Qα(x) is ν-times continuously differentiable
on R and for k = 0, 1, . . . , ν + 1

Q(k)
α (x) > 0.

On the other hand, since we have by (3.49) for 0 < x < 1

f (k)(x) ∼ xα−k

and for x ≥ 1
f (k)(x) ∼ xα−k−1 ln x,

we have from (3.50)

(3.51) Q(k)
α (x) ∼ xα−k+1, as x → 0+

and
Q(k)

α (x) ∼ S(x)
(
xα−1 ln x

)k
, as x →∞.
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Therefore, we have for 0 ≤ k ≤ ν

Q(k+1)
α (x) ∼ Q(k)

α (x)
Q′

α(x)
Qα(x)

.

Therefore we have (1.2). Since α − ν > 0, we know from (3.51) that (iii) of
Definition 1.3 is satisfied. Moreover, since Q′α(x)/Qα(x) ∼ f(x) for x ≥ 1, we
can see that Q′α(x)/Qα(x) is quasi-increasing on a certain interval (c2,∞) with
c2 > 0. ¤
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