Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 24 Issue 2
- /
- Pages.291-302
- /
- 2009
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS FOR 2F1 HYPERGEOMETRIC SERIES
- Rakha, Medhat A. (MATHEMATICS DEPARTMENT COLLEGE OF SCIENCE SUEZ CANAL UNIVERSITY, DEPARTMENT OF MATHEMATICS AND STATISTICS COLLEGE OF SCIENCE SULTAN QABOOS UNIVERSITY) ;
- Ibrahim, Adel K. (MATHEMATICS DEPARTMENT COLLEGE OF SCIENCE SUEZ CANAL UNIVERSITY) ;
- Rathie, Arjun K. (MATHEMATICS DEPARTMENT MIT ENGINEERING COLLEG)
- Published : 2009.04.30
Abstract
Contiguous relations for hypergeometric series contain an enormous amount of hidden information. Applications of contiguous relations range from the evaluation of hypergeometric series to the derivation of summation and transformation formulas for such series. In this paper, a general formula joining three Gauss functions of the form
File
References
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York, Dover, 1972
- P. Agarwal, Contiguous relations for bilateral basic hypergeometric series, Int. J. Math. Sci. 3 (2004), 375–388
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999
- G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge 1990
- C. F. Gauss, Disquisitiones generales circa seriem infinitam, Comm. soc. reg. sci. Gott. rec. Vol. II; reprinted in Werke 3 (1876), 123–162
- D. Gupta, Contiguous relations, basic hypergeometric functions and orthogonal polynomials III. Associated contiguous dual q−Hann polynomials, J. Comput. Appl. Math. 68 (1996), no. 1-2, 115–149
- D. Gupta, Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc. 350 (1998), no. 2, 679–808
- Hypergeometric2F1, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/01/
-
A. K. Ibrahim and M. A. Rakha, Contiguous relations for
$_2F_1$ hypergeometric series, Submitted for Publications - M. Ismail and C. Libis, Contiguous relations, basic hypergeometric functions and orthogonal polynomials, J. Math. Anal. Appl. 141 (1989), no. 2, 349–372
-
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of
$_3F_2$ , Indian J. Math. 32 (1992), 23–32 -
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a
$_3F_2$ , J. Comput. Appl. Math. 72 (1996), 293–300 https://doi.org/10.1016/0377-0427(95)00279-0 -
J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum a
$_3F_2$ , Math. Comp. 63 (1994), 367–376 - W. Miller, Jr., Lie theory and generalizations of hypergeometric functions, SIAM J. Appl. Math. 25 (1973), no. 1, 226–235
-
T. Morita, Use of Gauss contiguous relation in computing the hypergeometric functions
$_2F_1[n+\frac{1}{\2},n+\frac{1}{\2};m;z]$ , Inderdiscip. Inform. Sci. 2 (1996), no. 1, 63–74 - P. Paule, Contiguous Relations and Creative Telescopy, Technical report, RISC, Austria, 2001
-
E. D. Rainville, The contiguous function relations for ,
$_pF_q$ with applications to Bateman's$J^{u,v}_n$ and Rice's$H_n(\zeta,p,v)$ , Bull. Amer. Math. Soc. Ser. 2 51 (1945), 714–723 https://doi.org/10.1090/S0002-9904-1945-08425-0 - E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960
- M. A. Rakha and A. K. Ibrahim, On the contiguous relations of hypergeometric series, J. of Comput. Appl. Math. 192 (2006), 396–410 https://doi.org/10.1016/j.cam.2005.05.016
- M. A. Rakha and A. K. Ibrahim, Contiguous relations and their computations for 2F1 hypergeometric series, Comput. Math. Appl. (56) (2008), 1918–1926
- K. C. Richards, Shap power mean bounds for Gaussian hypergeometric functions, J. Math. Anal. Appl. 38 (2005), 303–313 https://doi.org/10.1016/j.jmaa.2005.01.018
- R. Vidunas, A generalization of Kummer's identity, Rocky Mountain J. Math. 32(2002), no. 2, 919–935 https://doi.org/10.1216/rmjm/1030539701
- R. Vidunas, Contiguous relations of hypergeometric series, J. Math. Anal. Appl. 135 (2003), 507–519 https://doi.org/10.1016/S0377-0427(02)00643-X
Cited by
- Classical Klein–Gordon solutions, symplectic structures, and isometry actions on AdS spacetimes vol.70, 2013, https://doi.org/10.1016/j.geomphys.2013.03.007
- On some new contiguous relations for the Gauss hypergeometric function with applications vol.61, pp.3, 2011, https://doi.org/10.1016/j.camwa.2010.12.008