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FATOU THEOREM AND EMBEDDING THEOREMS
FOR THE MEAN LIPSCHITZ FUNCTIONS

ON THE UNIT BALL

Hong Rae Cho and Jinkee Lee

Abstract. We investigate the boundary values of the holomorphic mean
Lipschitz function. In fact, we prove that the admissible limit exists at
every boundary point of the unit ball for the holomorphic mean Lipschitz
functions under some assumptions on the Lipschitz order. Moreover, we
get embedding theorems of holomorphic mean Lipschitz spaces into Hardy
spaces or into the Bloch space on the unit ball in Cn.

1. Introduction and results

The purpose of this paper is to study the boundary values and embedding
theorems for the holomorphic mean Lipschitz functions on the unit ball. In
fact, we prove that the admissible limit exists at every boundary point of the
unit ball for the holomorphic mean Lipschitz functions under some assumptions
on the Lipschitz order. Moreover, we get embedding theorems of holomorphic
mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit
ball in Cn.

Let B be the unit ball in Cn. Let S be the boundary of B. Let σ denote
the surface area measure on S normalized to be σ(S) = 1. If 0 < r < 1 and f
is a holomorphic function in B, we define

Mp(r, f) =
(∫

S

|f(rζ)|pdσ(ζ)
)1/p

, 1 ≤ p < ∞,

M∞(r, f) = sup{|f(rζ)| : ζ ∈ S}.
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For 1 ≤ p ≤ ∞ the Hardy space Hp(B) consists of those function f , holomor-
phic in B, for which

||f ||Hp(B) := sup
0<r<1

Mp(r, f) < ∞.

If f is a function in B and has a boundary value at almost everywhere on
S, we define the Lp modulus of continuity of f as following

ωp(t, f) = sup
||U−I||≤t

(∫

S

|f(Uζ)− f(ζ)|pdσ(ζ)
)1/p

, t > 0, 1 ≤ p < ∞,

ω∞(t, f) = sup
||U−I||≤t

ess sup
ζ∈S

|f(Uζ)− f(ζ)|, t > 0,

where U is a unitary operator and I the identity operator of Cn. In [3], authors
introduce the definition of the mean Lipschitz space on the unit ball in Cn. We
think that this is the first definition of the mean Lipschitz space on the unit
ball in Cn.

Definition 1.1. For 0 < α < 1 and 1 ≤ p ≤ ∞, we say that f ∈ Λp
α(S) if

f ∈ Hp(B) and

‖f‖Λp
α(S) := ‖f‖Hp(B) + sup

0<t<1

ωp(t, f)
tα

< ∞.

When p = ∞, we write Λα(S).

The approach region Dθ(ζ) is defined for θ > 1, ζ ∈ S

Dθ(ζ) =
{

z ∈ B : |1− 〈z, ζ〉| < θ

2
(1− |z|2)

}
.

It is defined that f has an admissible limit at ζ ∈ S if f(z) has a limit as z
approaches ζ through Dθ(ζ) for all θ > 1, i.e., there exists

lim
Dθ(ζ)3z→ζ

|f(z)|.

For any function f defined in B we define the exceptional set E(f) by the set of
all ζ ∈ S such that f fails to have an admissible limit at ζ. In [1], Ahern-Cohn
studied exceptional sets for Hardy-Sobolev functions.

We want to find the condition on the Lipschitz order α such that exceptional
set E(f) is empty.

Theorem 1.2. Let 1 < p ≤ ∞ and 0 < α < 1. Then E(f) = ∅ for all
f ∈ Λp

α(S) if and only if n/p < α.

We introduce the Hardy-Littlewood type characterization of the mean Lip-
schitz function that we need in the sequel. Let Rf be the radial derivative of
holomorphic functions f in B defined by

Rf =
n∑

j=1

zj
∂

∂zj
f.
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Let
HLp

α(f) = sup
0<r<1

(1− r)1−αMp(r,Rf),

where HL means the Hardy-Littlewood quantity.

Theorem 1.3 ([3]). Let 0 < α < 1 and 1 ≤ p < ∞. For f ∈ Λp
α(S) we have

‖f‖Λp
α(S) ' ‖f‖Hp + HLp

α(f).

The Bloch space B(B) is consisting of the holomorphic functions such that

sup
z∈B

(1− |z|2)|Rf(z)| < ∞.

We prove the following results.

Theorem 1.4. Let 1 < p < q < ∞ and 0 < α < 1. Then we have
(i) Λp

α(S) ⊂ Hq(B) if and only if n(1/p− 1/q) < α.
(ii) Λp

α(S) ⊂ Λα−n/p(S) if and only if n/p < α.
(iii) Λp

α(S) ⊂ B(B) if and only if n/p ≤ α.

In the case of n = 1, the embedding theorems were proved in ([2], [4]).
We can compare the above results with those of the Besov spaces. We define

Ap,α(B) the space of all holomorphic functions f on B satisfying

‖f‖Ap,α = ‖f‖Ap +
(∫

B

|Rf(z)|p(1− |z|2)(1−α)pdV (z)
)1/p

.

Let 1 < p < q < ∞ and 0 < α < 1. Then we have
(i) Ap,α(B) ⊂ Aq(B) if and only if (n + 1)(1/p− 1/q) < α.
(ii) Ap,α(B) ⊂ Λα−(n+1)/p(B) if and only if (n + 1)/p < α.
(iii) Ap,α(B) ⊂ B(B) if and only if (n + 1)/p ≤ α.

2. Proof of Theorem 1.2

We first assume that f ∈ Λp
α(S), where n/p < α. For z ∈ B we have

f(z)− f(0) =
∫ 1

0

Rf(tz)
dt

t
.(2.1)

Since |Rf(tz)| . t|∇f(tz)|, by Cauchy integral formula, we have

|Rf(tz)| . t sup
|z|≤2/3

|f(z)| for 0 < t < 1/2

so that ∣∣∣∣∣
∫ 1/2

0

Rf(tz)
dt

t

∣∣∣∣∣ .
∫ 1/2

0

|Rf(tz)|dt

t

.
∫ 1/2

0

t sup
|w|≤2/3

|f(w)|dt

t

. sup
|w|≤2/3

|f(w)|.

(2.2)
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From (2.1) and (2.2) we have that

|f(z)| . sup
|w|≤2/3

|f(w)|+
∫ 1

1/2

|Rf(tz)|dt.(2.3)

From (2.3) for ζ ∈ S we have

lim
Dθ(ζ)3z→ζ

|f(z)| . sup
|w|≤2/3

|f(w)|+ lim
Dθ(ζ)3z→ζ

∫ 1

1/2

|Rf(tz)|dt.

Since Rf is holomorphic, we have the following Cauchy integral formula
(see [6])

(2.4)

Rf(z)

=
1

(2πi)n

∫

|ζ|=ρ

Rf(ζ)
(∑n

j=1 ζ̄jdζj

)
∧

(∑n
j=1 dζ̄j ∧ dζj

)n−1

(ρ2 − 〈z, ζ〉)n
, |z| < ρ.

By (2.4) and Hölder’s inequality, it follows that

|Rf(tz)| . Mp(ρ,Rf)
1

(ρ− t|z|)n/p
, t|z| < ρ.

Take ρ = (1 + t|z|)/2. Then

|Rf(tz)| . (1− ρ)−1+α

(ρ− t|z|)n/p
. (1− t|z|)−1+α−n/p.

Thus we have
∫ 1

1/2

|Rf(tz)|dt .
∫ 1

1/2

dt

(1− t|z|)1−α+n/p

.
∫ 1

1/2

dt

(1− t)1−α+n/p

. 1,

since n/p < α. Thus f has a admissible limit at ζ ∈ S and so that E(f) = ∅.
Set

f(z) =
∫ 1

0

1
t1−α(1 + t− z1)n/p

dt, z ∈ B.

Then we have

Rf(z) =
n

p
z1

∫ 1

0

1
t1−α(1 + t− z1)1+n/p

dt, z ∈ B.
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It is clear that f is holomorphic in B. By Minkowski’s inequality, we have

Mp(r,Rf) =
(∫

S

|Rf(rζ)|p dσ(ζ)
)1/p

.
(∫

S

(∫ 1

0

1
|1 + t− rζ1|1+n/p

dt

t1−α

)p

dσ(ζ)

)1/p

.
∫ 1

0

(∫

S

1
|1 + t− rζ1|p+n

dσ(ζ)
)1/p 1

t1−α
dt.

We calculate
∫

S

dσ(ζ)
|1 + t− rζ1|p+n

. 1
(1 + t)p+n

∫

S

dσ(ζ)
|1− 〈r/(1 + t)~e1, ζ〉|p+n

. 1
(1 + t)p+n

1
(1− r/(1 + t))p

. 1
(1 + t− r)p

,

where ~e1 = (1, 0, . . . , 0). Thus we have

Mp(r,Rf) .
∫ 1

0

1
t1−α(1 + t− r)

dt

=
∫ 1−r

0

1
t1−α(1 + t− r)

dt +
∫ 1

1−r

1
t1−α(1 + t− r)

dt.

For the first term we have

(2.5)
∫ 1−r

0

1
t1−α(1 + t− r)

dt ≤ 1
1− r

∫ 1−r

0

1
t1−α

dt . 1
(1− r)1−α

.

On the other hand, for the second term we have

(2.6)
∫ 1

1−r

1
t1−α(1 + t− r)

dt .
∫ 1

1−r

1
t2−α

dt . 1
(1− r)1−α

.

Then (2.5) and (2.6) imply

Mp(r,Rf) . 1
(1− r)1−α

,

and it implies that f ∈ Λp
α(S).
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For 1/2 < r < 1 we have

Rf(r, 0, . . . , 0) =
n

p
r

∫ 1

0

dt

t1−α(1 + t− r)1+n/p

&
∫ 2(1−r)

1−r

1
t1−α(1 + t− r)1+n/p

dt

& 1
(1− r)1+n/p

∫ 2(1−r)

1−r

dt

t1−α

& (1− r)α−(1+n/p).

By Fatou’s lemma, we have

lim inf
r→1

f(r, 0, . . . , 0)) = f(0) + lim inf
r→1

∫ 1

0

Rf(sr, 0, . . . , 0)
ds

s

≥ f(0) +
∫ 1

0

lim inf
r→1

Rf(sr, 0, . . . , 0)
ds

s

& f(0) +
∫ 1

0

ds

(1− s)1+(n/p−α)

ds

s
.

This implies that

lim
Dθ(ζ)3z→(1,0,...,0)

|f(z)| = ∞ for all θ > 1.

Thus (1, 0, . . . , 0) ∈ E(f) and it is contradiction.

3. Proof of Theorem 1.4

For the proof of Theorem 1.4 we need a generalization of the Fejér-Riesz
inequality as follows.

Lemma 3.1 ([5]). Let Lj,k = Rj×Ck×{0}×· · ·×{0} ⊂ Cn, where 1 ≤ j ≤ n
and 1 ≤ j + k ≤ n. For 0 < p < ∞ we have

∫

B∩Lj,k

|f(z)|p(1− |z|2)n−1/2(j+2k+1)dz . ‖f‖p
p,

where dz is the Lebesgue measure on Lj,k.

Proof of Theorem 1.4. (i) We first assume that Λp
α(S) ⊂ Hq(B). Let

f(z) =
∫ 1

0

1
t1−α(1 + t− z1)n/p

dt, z = (z1, z2, . . . , zn) ∈ B.(3.1)

Since f ∈ Λp
α(S), f ∈ Hq(B) by assumption. Applying Lemma 3.1, we have

that ∫ 1

0

|f(x)|q(1− x2)n−1 dx . ||f ||qHq < ∞.
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On the other hand, we obtain
∫ 1

0

|f(x)|q(1− x2)n−1 dx =
∫ 1

0

(∫ 1

0

1
t1−α(1 + t− x)n/p

dt
)q

(1− x2)n−1 dx

&
∫ 1

0

(∫ 1

0

1
t1−α(s + t)n/p

dt
)q

sn−1 ds

by putting 1− x = s. We know that
∫ 1

0

dt

t1−α(s + t)n/p
≥

∫ 1

0

dt

(s + t)1−α+n/p
& sα−n/p.

Thus we have
∫ 1

0

|f(x)|q(1− x2)n−1 dx &
∫ 1

0

s(α−n/p)q+n−1 ds

and so that s(α−n/p)q+n−1 is integrable on (0, 1). Thus n(1/p− 1/q) < α.
Conversely, let us suppose that n(1/p− 1/q) < α. Let f ∈ Λp

α(S). By (2.4)
and Hölder’s inequality, it follows that

|Rf(z)| . Mp(ρ,Rf)
1

(ρ2 − |z|2)n/p
, |z| < ρ.(3.2)

For 0 < r < 1 we take ρ = (1 + r)/2. From (3.2) we have

M∞(r,Rf) . Mp(ρ,Rf)(1− r)−n/p

. ‖f‖Λp
α(S)(1− ρ)−1+α(1− r)−n/p

. ‖f‖Λp
α(S)(1− r)−1+(α−n/p).

Thus we obtain

Mq(r,Rf) .
(∫

|ζ|=r

|Rf(ζ)|p|Rf(ζ)|q−pdσ

)1/q

. (M∞(r,Rf))1−p/q(Mp(r,Rf))q/p

. ‖f‖Λp
α(S)(1− r)n(1/q−1/p)−1+α.

We note that

f(ζ)− f(0) =
∫ 1

0

Rf(rζ)
dr

r
.(3.3)

Since |Rf(rζ)| . r|∇f(rζ)| by Cauchy integral formula, we have

|Rf(rζ)| . r sup
|z|≤2/3

|f(z)| for 0 < r < 1/2
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so that ∣∣∣∣∣
∫ 1/2

0

Rf(rζ)
dr

r

∣∣∣∣∣ .
∫ 1/2

0

|Rf(rζ)|dr

r

. sup
|z|≤2/3

|f(z)|.
(3.4)

From (3.3) and (3.4) we have that

|f(ζ)| . sup
|z|≤2/3

|f(z)|+
∫ 1

1/2

|Rf(rζ)|dr.

By Minkowski’s inequality, it follows that
(∫

S

|f(ζ)|qdσ(ζ)
)1/q

. sup
|z|≤2/3

|f(z)|+
(∫

S

(∫ 1

1/2

|Rf(rζ)|dr

)q

dσ(ζ)

)1/q

. sup
|z|≤2/3

|f(z)|+
∫ 1

1/2

Mq(r,Rf)dr

. ‖f‖Hp(B) + ‖f‖Λp
α(S)

∫ 1

1/2

(1− r)n(1/q−1/p)−1+αdr.

Note that n(1/p− 1/q) < α and so that n(1/q − 1/p)− 1 + α > −1. Thus the
integral ∫ 1

1/2

(1− r)n(1/q−1/p)−1+αdr

converges and so it follows that ‖f‖Hq(B) . ‖f‖Λp
α(S). Hence we get (i).

Now we prove (ii) and (iii). Let 0 < ρ < 1. Let f ∈ Λp
α. By (3.2), we have

|Rf(z)| . Mp(ρ,Rf)
1

(ρ2 − |z|2)n/p
.

Take ρ = (1 + |z|)/2. Then we obtain

|Rf(z)| . Mp(ρ,Rf) (1− |z|2)−n/p

. (1− ρ)−1+α (1− |z|2)−n/p

. (1− |z|2)−1+(α−n/p).

Therefore f ∈ Λα−n/p if n/p < α by Theorem 1.3.
In particular, if α = n/p, then f ∈ B(B).
Conversely, for α < n/p, it is enough to find a function f ∈ Λp

α(S) which is
not a Bloch function. Taking the same function as (3.1), we have shown that
the function f is in Λp

α(S) and

Rf(r, 0, . . . , 0) & (1− r)α−(1+n/p)

for 1/2 < r < 1. Hence

(1− r)|Rf(r, 0, . . . , 0)| & (1− r)α−n/p →∞ as r → 1,
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and it implies that f 6∈ B(B). This completes the proof of Theorem 1.4. ¤
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