직운산 세일층의 지화학적 연구: 태박산분지 오오도비스 중기 응축층 규명을 위한 시퀀스층서학적 적용

Geochemical Study of the Jigunsan Shale: A Sequence Stratigraphic Application to Defining a Middle Ordovician Condensed Section, Taebacksan (Taebaeksan) Basin

  • 유인창 (경북대학교 지질학과) ;
  • 유선영 (경북대학교 지질학과) ;
  • 손병국 (한국지질자원연구원 석유해저자원본부)
  • 발행 : 2009.02.28

초록

태백산분지 백운산향사대의 남익부를 따라 약 30 m 두께로 노출되어 있는 오오도비스 중기의 직운산셰일층은 그동안 탄산염 대지환경에서 퇴적된 막골석회암층를 피복하는 해침상의 셰일층으로 단순히 해석되어져 왔다. 그러나 본 연구의 결과들은 직운산셰일층 대부분이 직운산셰일층 하부구간에 나타나는 유기물질이 풍부한(>3 wt.%) 흑회색 셰일로 구성된 약 240 cm 두께의 최대해침기 동안에 퇴적된 박층의 해성층 위를 피복하는 해퇴상의 셰일층으로 해석될 수 있음을 지시한다. 정밀 층서 분석과 병행하여 실시한 주성분원소 분석, 조성광물 분석, 미량원소 분석 및 총유기탄소와 무기탄소 분석은 직운산셰일층 하부구간에 나타나는 박층의 해성층을 고수위기 초기 동안에 밀도변환면이 확장됨에 따라 형성된 특징적인 무산소환경에서 퇴적된 응축층으로 규정하기를 허락한다. 아울러 직운산셰일층 하부구간 내에서 해침면, 최대해침면, 최소퇴적감소면, 해퇴개시면과 같은 시퀀스층서학적 또는 환경학적으로 의미가 있는 뚜렷한 특징의 층서면들이 인지되었다. 이러한 층서면들은 향후 태백산분지 내 오오도비스 중기 퇴적층들의 정교한 지역간 층서대비 및 구조운동에 따른 층서적 변이와 함께 분지발달사에 대한 종합적인 이해를 이끌어 내는데 매우 유용한 정보들을 제공해 줄 수 있다.

키워드

직운산셰일층;시퀀스층서학;응축층;고산화환원환경;밀도변환면

참고문헌

  1. Achterberg, E.P., Van den Berg, C.M.G. and Colombo, C. (2003) High resolution monitoring of dissolved Cu and Co in coastal surface waters of western North Sea. Continental Shelf Research, v. 23, p. 611-623 https://doi.org/10.1016/S0278-4343(03)00003-7
  2. Algeo, T.J., Schwark, L. and Hower, J.C. (2004) High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): Implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology, v. 206, p. 259-288 https://doi.org/10.1016/j.chemgeo.2003.12.028
  3. Cheong, C,H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweon-do, Korea. Journal of the Geological Society of Korea, v. 5, p. 13-54
  4. Henderson, G.M. (2002) New oceanic proxies for paleoclimate. Earth and Planetary Science Letter, v. 203, p. 1-13 https://doi.org/10.1016/S0012-821X(02)00809-9
  5. Piper, D.Z. and Perkins, R.B. (2004) A modern vs. Permian black shale-the hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology. v. 206, p. 177-197 https://doi.org/10.1016/j.chemgeo.2003.12.006
  6. Ryu, I.C., Oh, C.W. and Kim, S.W. (2005) A middle Ordovician drowning unconformity on the northeastern flank of the Okcheon (Ogcheon) Belt, Southern Korea. Gondwana Research, v. 8, p. 511-528 https://doi.org/10.1016/S1342-937X(05)71152-7
  7. Schutter, S.R. (1992) Ordovician hydrocarbon distribution in North America and its relationship to eustatic cycles. In: Webby, B.D. and Laurie, J.R. (eds.), Global perspectives on Ordovician geology. p. 421-432. Balkema, Rotterdam
  8. Timothy, D.A. and Calvert, S.E. (1998) Systematics of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific. Paleoceanography, v. 13, no. 2, p. 127-130 https://doi.org/10.1029/97PA03646
  9. Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, v. 232, p. 12-32 https://doi.org/10.1016/j.chemgeo.2006.02.012
  10. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. and Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies. American Association of Petroleum Geologists Methods in Exploration Series 7, Tulsa, 55p
  11. Wedepohl, K.H. (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K. and Urey, H.C. (eds.), Physics and Chemistry of the Earth. p. 307-331. Pergamon, Oxford
  12. Breit, G.N. and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology, v. 91, p. 83-97 https://doi.org/10.1016/0009-2541(91)90083-4
  13. Lee, H.Y. and Lee, J.D. (1971) Conodont fauna form the Great Limestone Series in Dongjeom district, Samcheog- gun, Gangweon-do and its stratigraphical significance. Journal of the Geological Society of Korea, v. 7, p. 89-101
  14. Wright, J. and Colling, A. (1995) Seawater: Its composition, properties and behavior. The Open University, England, 168p
  15. Yun, C.S. (1999) Three Ordovician cephalopods from the Jigunsan Formation of Korea. Paleontological Research, v. 3, p. 65-80
  16. Lee, Y.N. and Lee, H.Y. (1986) Conodont biostratigraphy of the Jigunsan Shale and Duwibong Limestone in the Nokjeon-Sangdong Area, Yeongweol-Gun, Kangweondo, Korea. Journal of Paleontological Society of Korea, v. 2, p. 114-136
  17. Loutit, T.S., Hardenbol, J., Vail, P.R. and Baum, G.R. (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross. C.A. and Kendall, C.G. (eds.), Sealevel changes: An integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 183-213
  18. Morford, J.L. and Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, v. 63, p. 1735-1750 https://doi.org/10.1016/S0016-7037(99)00126-X
  19. Osleger, D.A. and Read, J.F. (1991) Relation of eustasy to stacking patterns of meter-scale carbonate cycle, Late Cambrian, U.S.A. Journal of Sedimentary Petrology, v. 61, p. 1225-1252 https://doi.org/10.1306/D426786B-2B26-11D7-8648000102C1865D
  20. Whitfield, M. (2002) Interactions between phytoplankton and trace metals in the ocean. Advanced Marine Biology, v. 41, p. 3-120 https://doi.org/10.1016/S0065-2881(01)41002-9
  21. Wilde, P., Lyons, T.L. and Quinby-Hunt, M.S. (2004) Organic carbon proxies in black shales: Molybdenum. Chemical Geology, v. 206, p. 167-176 https://doi.org/10.1016/j.chemgeo.2003.12.005
  22. Wang, Y. and van Cappellen, P. (1996) A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, v. 56, p. 171-183 https://doi.org/10.1016/0016-7037(96)00140-8
  23. Woo, J. and Chough, S.K. (2007) Depositional processes and sequence stratigraphy of the Jigunsan Formation (Middle Ordovician), Taebaeksan Basin, mideast Korea: Implications for basin geometry and sequence development, Geoscience Journal, v. 11, p. 331-335 https://doi.org/10.1007/BF02857050
  24. Seisbold, E. and Berger, W.H. (1993) The Sea Floor: An introduction to marine geology (second edition). Springer Verlag, New York, 356p
  25. Mitchum, R., Vail, P. and Thompson, S. (1977) Seismic stratigraphy and global changes in sea level, Part 2: The depositional sequence as the basic unit for stratigraphic analysis. In: Payton, C. (ed.), Seismic stratigraphy: Application to hydrocarbon exploration. American Association of Petroleum Geologist Memoir 26, p. 53-62
  26. Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D. and Vaughan, D.J. (1996) Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, v. 56, p. 3631-3642 https://doi.org/10.1016/0016-7037(96)00195-0
  27. Lee, K.W. and Lee, H.Y. (1990) Conodont biostratigraphy of the Upper Choseon Supergroup in Jangseong- Dongjeom area, Gangweondo. Journal of Paleontological Society of Korea, v. 6, p. 188-210
  28. Mount, J.F., Hunt, D.L., Greene, L.R. and Dienger, J. (1991) Depositional systems, biostratigraphy and sequence stratigraphy of Lower Cambrian grand cycles, southwestern Great Basin. In: Cooper, J.D. and Stevens, C.H. (eds.) Paleogeography of the Western United States. Pacific Section of Society of Economic Paleontologists and Mineralogists Book 67, p. 209-229
  29. Canfield, D.E. (1994) Factors influencing organic carbon preservation in marine sediments. Chemical Geology, v. 114, p. 315-329 https://doi.org/10.1016/0009-2541(94)90061-2
  30. Vail, P.R., Hardenbol, J. and Todd, R.G. (1984) Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy: American Association of Petroleum Geologists Memoir 36, p. 129-144
  31. Chester, R. (2000) Marine geochemistry. Blackwell, London, 506p
  32. Calvert, S.E. and Pederson, T.F. (1993) Geochemistry of recent oxic and anoxic sediments: Implications for the geological record. Marine Geology, v. 113, p. 67-88 https://doi.org/10.1016/0025-3227(93)90150-T
  33. Karl, D.M. and Knauer, G.A. (1991) Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Research, Part A 38, p. 921-942 https://doi.org/10.1016/S0198-0149(10)80017-2
  34. Wedepohl, K.H. (1991) The composition of the upper Earth's crust and the natural cycles of selected elements. In: Merian, E. (ed.), Metals and their compounds in the natural environment. p. 3-17, Weinheim, Germany
  35. Algeo, T.J. and Maynard, J.B. (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, v. 206, p. 289-318 https://doi.org/10.1016/j.chemgeo.2003.12.009
  36. Arthur, M.A., Dean, W.E., Neff, E.D., Hay, B.J., King, J. and Jones, G. (1994) Varve-calibrated records of carbonate and organic carbon accumulation over the last2000 year in the Black Sea. Global Biogeochemical Cycles in the Climate System, v. 8, p. 195-217 https://doi.org/10.1029/94GB00297
  37. Galloway, W. (1989) Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding surface bounded depositional units. American Association of Petroleum Geologist Bulletin, v. 73, p. 125- 142
  38. Algeo, T.J. and Heckel, P.H. (2008) The Late Pennsylvanian Midcontinent Sea of North America: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 205-221 https://doi.org/10.1016/j.palaeo.2008.03.049