Flame- Extinguishing Concentrations of Inert Gases in Jet Diffusion Flames

제트확산화염에서의 불활성기체 소화농도

  • Published : 2009.02.28


Extinguishing limits of laminar ethylene/oxygen flames in both normal and inverse co-flow jet burner have been determined experimentally and computationally. An inert gas($N_2$, Ar, $CO_2$) was added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the physical aspect of inert gases was main mechanism for flame blow-out as same as cup burner test, but the flow effect should be considered to determine the extinction concentration. The numerical prediction was performed with modified WSR model and the result was in good agreement with the measurements. The experimental and numerical methods could be used for the assessment of various flame suppression agents such as minimum extinguishing concentration.


extinguishing concentration;inert gas;minimum extinguishing concentration;jet diffusion flames;well stirred reactor


  1. Shiling Liu, M.C. Soteriou, M.B. Colket, J.A. Senecal, 'Determination of Cup-burner Extinguishing Concentration using the perfectly stirred Reactor Model', Fire Safety Journal, Vol. 43, pp. 589-597, 2008 https://doi.org/10.1016/j.firesaf.2008.01.004
  2. J.A. Senecal, 'Flame Extinguishing in the Cup-burner by Inert Gases', Fire Safety Journal, Vol. 40, pp. 579-591,2005 https://doi.org/10.1016/j.firesaf.2005.05.008
  3. E.J. Lee, K.C. Oh, H.D. Shin, 'Soot Formation in Inverse Diffusion Flames of Diluted Ethene', Fuel, Vol. 84, pp. 543-550, 2005 https://doi.org/10.1016/j.fuel.2004.11.003
  4. V. R. Katta, F. Takahashi, G. T. Linteris, 'Suppression of Cup-burner Flames using Carbon Dioxide in Microgravity', Combustion and Flame, Vol. 137, pp. 506-522, 2004 https://doi.org/10.1016/j.combustflame.2004.01.015
  5. Naoshi Saito, Yoshio Ogawa, Yuko Saso, Chihong Liao, Ryuta Sakei, 'Flame-Extinguishing Concentrations and Peak Concentrations of $N_2$, Ar, $CO_2$ and their Mixtures for Hydrocarbon Fuels', Fire Safety Journal, Vol. 27, pp. 185-200, 1996 https://doi.org/10.1016/S0379-7112(96)00060-4
  6. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriaty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissiansky, Z. Qin, 'GRI-Mech 3.0', http://www.me.berke1ey.edu/gri_ mech/
  7. NFPA 2001, 'Standard on Clean Agent Fire Extinguishing System', 1996
  8. R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grear, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigum, The Chemkin Thermodynamic Databass, CHEMKIN Collection, Release 3.0, Reaction Design, Inc., San Diego, CA, 1997
  9. 'The SFPE Handbook of Fire Protection Engineering', 3rd ed, NFPA, 2002
  10. Grosshandler, W. L., Gann, R. G. & Pitts, W. M., eds, 'Evaluation of Alternative In-flight Fire Suppressants for Full-scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays', NIST SP 861, National Institute for Standards and Technology, Gaithersburg, MD,1994