Hypolipidemic and Antioxidative Properties of Tocotrienol-rich Fraction (TRF) Supplementation in High Fat-fed Rats

  • Choi, Young-Min (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2009.12.31

Abstract

In this study, we investigated a dose-dependent hypolipidemic and antioxidant effects of tocotrienol-rich fraction (TRF) from grape seeds. After induction of hyperlipidemia for 4 weeks, rats were supplemented with different dose (5, 25, and 50 mg/kg BW/day) of TRF for 1 week. Oral administration of TRF (50 mg/kg BW/day) decreased the plasma triglyceride (TG, 162.6 mg/dL), total cholesterol (TC, 83.7 mg/dL), low density lipoprotein-cholesterol (LDL-C, 20.3 mg/dL), malondialdehyde contents (MDA, 3.3 nmol/dL), and atherogenic index (AI, 2.0) compare to high-fat diet group. These data suggest that TRF supplementation has significant health benefits through the modulation of physiological functions that include various atherogenic lipid profiles and antioxidative status in hyperlipidemia.

References

  1. Aygustin J, Dwyer J. Coronary heart disease: Dietary approaches to reducing risk. Top. Clin. Nutr. 10: 1-3 (1999)
  2. Wald NJ, Law MR. Serum cholesterol and ischemic heart disease. Atherosclerosis 118: 1-5 (1995) https://doi.org/10.1016/0021-9150(95)05587-M
  3. Krieger M. The 'best' of cholesterols, the 'worst' of cholesterols: A tale of two receptors. P. Natl. Acad. Sci. USA 95: 4077-4080 (1998) https://doi.org/10.1073/pnas.95.8.4077
  4. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88: 1785-1792 (1991) https://doi.org/10.1172/JCI115499
  5. Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J. Lipid Res. 24: 1070-1076 (1983)
  6. Porkkala-Sarataho E, Salonen JT, Nyyssonen K, Kaikkonen J, Salonen R, Ristonmaa U, Diczfalusy U, Brigelius-Flohe R, Loft S, Poulsen HE. Long-term effects of vitamin E, vitamin C, and combined supplementation on urinary 7-hydro-8-oxo-2'-deoxyguanosine, serum cholesterol oxidation products, and oxidation resistance of lipids in nondepleted men. Arterioscl. Throm. Vas. 20: 2087-2093 (2000) https://doi.org/10.1161/01.ATV.20.9.2087
  7. Minhajuddin M, Beg ZH, Iqbal J. Hypolipidemic and antioxidant properties of tocotrienol-rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food Chem. Toxicol. 43: 747-753 (2005) https://doi.org/10.1016/j.fct.2005.01.015
  8. Qureshi AA, Qureshi N, Wright JJK, Shen Z, Kramer G, Gapor A, Chong YH, DeWitt G, Ong ASH, Peterson DM, Bradlow BA. Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (Palmvitee). Am. J. Clin. Nutr. 53: 1021S-1026S (1991)
  9. Khor HT, Chieng DY, Ong KK. Tocotrienols inhibit HMG-CoA reductase activity in the guinea pig. Nutr. Res.15: 537-544 (1995) https://doi.org/10.1016/0271-5317(95)00021-6
  10. Qureshi AA, Mo H, Packer L, Peterson DM. Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J. Agr. Food Chem. 48: 3130-3140 (2000) https://doi.org/10.1021/jf000099t
  11. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ. Tocotrienols regulate cholesterol production in mammalian cells by posttranscriptional suppression of 3-hydroxy-3-methylglutarylcoenzyme A reductase. J. Biol. Chem. 268: 11230-11238 (1993)
  12. Theriault A, Wang Q, Gapor A, Adeli K. Effects of gammatocotrienol on apoB synthesis, degradation, and secretion in HepG2 cells. Arterioscl. Throm. Vas. 19: 704-712 (1999) https://doi.org/10.1161/01.ATV.19.3.704
  13. Pearce BC, Parker RA, Deason ME, Dischino DD, Gillespie E, Qureshi AA, Volk K, Wright JJ. Hypocholesterolaemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. J. Med. Chem. 37: 526-541 (1994) https://doi.org/10.1021/jm00030a012
  14. Serbinova EA, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of $\alpha$-tocopherol and α-tocotrienol. Free Radical Bio. Med. 10: 263-275 (1991) https://doi.org/10.1016/0891-5849(91)90033-Y
  15. Choi Y, Lee J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 114: 1386-1390 (2009) https://doi.org/10.1016/j.foodchem.2008.11.018
  16. Lee SM, Lee J. Tocopherol and tocotrienol contents of vegetable oils, margarines, butters, and peanut butters consumed in the Korean diet. Food Sci. Biotechnol. 15: 183-188 (2006)
  17. Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzyme assay of uric acid in serum and urine. Clin. Biochem. 26: 227-231 (1980)
  18. Buege JA, Aust SD. Microsomal lipid peroxidation. Method Enzymol. 52: 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  19. Qureshi AA, Bradlow BA, Salser WA, Brace LD. Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters of hypercholesterolemic humans. J. Nutr. Biochem. 8: 290-298 (1997) https://doi.org/10.1016/S0955-2863(97)89667-2
  20. Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJ. Hypocholesterolaemic activity of synthetic and natural tocotrienols. J. Med. Chem. 35: 3595-3606 (1992)
  21. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. New Engl. J. Med. 320: 915-924 (1989) https://doi.org/10.1056/NEJM198904063201407
  22. Augusti KT, Narayanan A, Pillai LS, Ebrahim RS, Sivadasan R, Sindhu KR, Subha I, Abdeen S, Nair SS. Beneficial effects of garlic (Allium sativum Linn) on rats fed with diets containing cholesterol and either of the oil seeds, coconuts, or groundnuts. Indian J. Exp. Biol. 39: 660-667 (2001)
  23. Tanaka M, Nakaya S, Kumai T, Watanabe M, Matsumoto N, Kobayashi S. Impaired testicular function in rats with diet-induced hypercholesterolemia and/or streptozotocin-induced diabetes mellitus. Endocr. Res. 27: 109-117 (2001) https://doi.org/10.1081/ERC-100107174
  24. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671-701 (1996) https://doi.org/10.1007/BF02522884
  25. Komiyama K, Iizuka K, Yamaoka M, Watanabe H, Tsuchiya N, Umezawa I. Studies on the biological activity of tocotrienols. Chem. Pharm. Bull. 37: 1369-1371 (1989) https://doi.org/10.1248/cpb.37.1369