DOI QR코드

DOI QR Code

A Dynamic Graphical Method for Transformations and Curvature Specifications in Regression

  • Seo, Han-Son ;
  • Yoon, Min
  • Published : 2009.02.28

Abstract

A dynamic graphical procedure is suggested to estimate optimal response transformation parameter and a curvature function of covariates in the regression model. Augmented partial residual plot is chosen for specifying a curvature. The proposed method is compared with a different approach (Soo, 2007) and is investigated efficiency by applying it to the real and the artificial data. The method is also extended to the 3D graphical situations.

Keywords

Augmented partial residual plot;dynamic graphics;response transformation

References

  1. Berk, K. N. and Booth D. E. (1995). Seeing a curve in multiple regression, Technometrics, 37, 385-398 https://doi.org/10.2307/1269731
  2. Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. (1983). Graphical Methods for Data Analysis, Duxbury Press, Boston
  3. Cook, R. D. (1993). Exploring partial residual plots, Technometrics, 35, 351-362 https://doi.org/10.2307/1270269
  4. Cook, R. D. and Weisberg, S. (1994). Transforming a response variable for linearity, Biometrika, 81, 731-737 https://doi.org/10.1093/biomet/81.4.731
  5. Eaton, M. L. (1986). A characterization of spherical distributions, Journal of Multivariate Analysis, 20, 272-276 https://doi.org/10.1016/0047-259X(86)90083-7
  6. Larsen, W. A. and Mccleary, S. J. (1972). The use of partial residual plots in regression analysis, Technometrics, 14, 781-790 https://doi.org/10.2307/1267305
  7. Mallows, C. L. (1986). Augmented partial residual plots, Technometrics, 28, 313-320 https://doi.org/10.2307/1268980
  8. Seo, H. S. (2007). A visual procedure for response transformations and curvature specifications, The 7th International Conference on Optimization: Techniques and Applications (ICOTA 7), CD-ROM
  9. Tierney, L. (1990). LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics, John Wiley & Sons, New York
  10. Weisberg, S. (1985). Applied Linear Regression, John Wiley & Sons, New York

Cited by

  1. Regression diagnostics for response transformations in a partial linear model vol.24, pp.1, 2013, https://doi.org/10.7465/jkdi.2013.24.1.33