A Multi-dimensional Query Processing Scheme for Stream Data using Range Query Indexing

Dong-Un Lee*, Yunseok Rhee**

Abstract

Stream service environment demands real-time query processing for voluminous data which are ceaselessly delivered from tremendous sources. Typical R-tree based query processing technologies cannot efficiently handle such situations, which require repetitive and inefficient exploration from the tree root on every data event. However, many stream data including sensor readings show high locality, which we exploit to reduce the search space of queries to explore. In this paper, we propose a query processing scheme exploiting the locality of stream data. From the simulation, we conclude that the proposed scheme performs much better than the traditional ones in terms of scalability and exploration efficiency.

Keyword : Stream data, data locality, range query index, multi-dimensional query
I. 서론

유비쿼터스 컴퓨팅의 실현과 함께 센서네트워크, 모바일 네트워크 등의 다양한 네트워크 그리고 맵힌 정보들이 유동되고 이를 위한 새로운 서비스가 출현하고 있다 (1,2,3,4). 특히 (그림 1)과 같은 스트림 서비스 환경은 각종 데이터 단말들로부터 맵힌 데이터들이 연속적인 스트림 형태로 온라인 들어오고, 많은 사용자들이 자신들이 원하는 데이터 또는 이벤트를 다양한 질의(query) 형태로 등록, 이를 실시간으로 제공받는 환경을 일컫는다 (5,6,7). 이와 같은 환경에서는 수많은 사용자의 질의를 효과적으로 저장하고, 특성을 가진 데이터 또는 이벤트의 연속에 따라 이를 만족하는 질의를 효과적으로 찾아내어 해당 사용자에게 그 결과를 신속하게 제공하는 대규모 실시간 모니터링(massive realtime monitoring) 시스템의 개발이 필요하다.

기존의 연구들은 데비 데이터베이스를 기반으로 데이터를 저장하고, 이를 사용자의 질의에 대해 효과적으로 자료를 검색 제공하는 형태로 이뤄졌으나 (1,3,8). 주기적으로 발생하는 데비값들을 DB에 저장하는 자체가 매우 무모하며, 대부분의 데이터가 시간을 지나면 소요없이 되는 일자리 데이터일 경우, DB활용의 필요성은 매우 낮다. 뿐만 아니라 이와 같은 일자리 데이터가 엉뚱한 규모로 발생하는 상황에서 이를 저장 후 검색 방식으로 지원하는 것은 시스템의 용량성과 확장성을 떨어뜨리는 요인이라고 할 수 있다.

![그림 1. 스트림 서비스 환경](Fig. 1. Stream Service Environment)

스트림 서비스에 관한 연구는 현재 센서네트워크, 주식거래, 인터넷 온선 등의 분야에서 활발히 해지고 있다. 이 가운데 Bridge Health Monitoring 시스템(9,4,10)은 대표적인 적용 사례에 속한다. 기존에는 교통을 유지, 보수하기 위해 주기적으로 사람이 직접 안전도를 측정하고 보수하는 작업을 하였으나, 사람의 이동 반경과 감각 정보에 한계가 있어 전체 교통을 실시간에 점검하기는 어려웠고 작업 환경 또한 매우 위험했다. 하지만 센서(온도, 습도, 진동, 장력)의 종류가 많아지고, 이들 센서 간 네트워킹이 가능해지면서 이를 활용한 자동화된 교통 안전 시스템이 개발되었다. 즉, (그림 2(a))에 보이는 바와 같이, 교통의 상태를 확인할 수 있는 중요한 지점에 많은 수의 센서들이 장착되고, 이들 센서들의 데이터들을 수집, 처리할 수 있게 되었다. 이를 통해 (그림 2(b))처럼 수집된 센서 정보를 분석하여 교통의 상태를 쉽게 모니터링함으로 더욱 정밀하고 안전한 유지 보수가 가능하게 되었다. 또한 각 센서에 대해 다수의 사용자(또는 시스템)가 다양한 종류의 질의를 통해 교통의 상태정보를 제공받을 수 있게 되었다. 이처럼 수많은 질의들을 효율적으로 처리하여 스트림 형태로 입력되는 센서 정보를 원하는 사용자에게 신속하게 전달해주는 질의처리 시스템 설계는 매우 중요한 문제이다.

또 다른 대표적 적용 예는 주식 데이터에 대한 가격 변동을 모니터링하고 이를 사용자들에게 제공하는 경우이다. 매우 짧은 시간에 수많은 종목의 주가가 계속적으로 변동하고, 사용자는 자신이 매매를 원하는 주가를 기다리는 상황에서, 시간적으로 발생하는 수많은 주가 데이터는 스트림 데이터를 구성하며, 사용자가 원하는 주가 조건에서 원하는 질의에 해당한다. 이와 같은 환경에서 주가 변동 정보를 매우 빠르게 사용자에게 알리는 서비스 즉, 질의처리 결과를 매우 빠르게 알려주는 질의처리 시스템 설계는 필수적이라고 볼 수 있다.

![그림 2. Bridge Health Monitoring 시스템](Fig. 2. Case of Bridge Health Monitoring)

이처럼 다양한 스트림 서비스가 활용되고 있으며, 이 서비스는 연속적인 스트림 데이터의 특성에 적합한 질의처리 시스템 설계를 통해 수많은 사용자들이 다양한 질의를 동등할 수 있는 빠르고 정확한 정보를 제공받는 것이 매우 중요한 목적이므로 할 수 있다. 따라서 본 연구에서는 스트림 데이터의 높은 지역성(locality)을 활용하여 사용자의 다양한 질의 표현을
효과적으로 지원하는 다중 질의처리 기법을 제안하고자 한다.

II. 기존 질의처리 방법과 문제점

기존적인 스테인 처리를 위해서 B-트리 사용 1차원 질의처리 구조가 대표적으로 활용된다 (1,11,12). 예를 들어 다수의 센서(온도, 습도, 조도, 등) 정보를 가지고 질의를 구성한다면 1차원 질의 처리 구조는 모든 정보(센서)의 질의를 한 곳에 관리하는 것이 아니라 모든 센서의, 습도, 조도의 통과 각각 나누어서 구성하는데 사용된다. B-트리 구조는 사용자가 동작한 질의가 트리의 각 단말노드에 저장되며, 질의범위의 시작점과 끝점에 따라 저장되어 구성된다. 따라서, 트리에 저장되어 있는 질의를 탐색하기 위해서는 최상위 노드부터 마지막 노드까지 트리의 높이만큼 탐색하며 효율적인 탐색 경로를 제공한다.

하지만 트리에 담겨진 질의 정보는 단일 데이터로 정해져 있어 범위 질의에 대한 질의를 동작할 수 없다. 이에 1차원 질의처리 구조는 다양한 질의를 표현할 수 없기에 스트림 서비스 환경에 적합하기 힘든 구조임을 알 수 있다.

[그림 3]의 2차원 질의처리 구조는 윈도우에 대한 범위 질의와 습도에 대한 범위 질의 조건이 동시에 표현된다. 이렇게 사용자가 동작한 범위 질의는 B-트리와 유사하게 단말노드에 저장되며 중간 노드들은 하위 노드의 범위를 포함하는 전체 영역 정보를 갖는다. R-트리 역시 질의의 범위의 시작점에 대해 정렬된 형태로 구성되기 때문에 최상위 노드부터 마지막 노드로 트리를 높이만큼 탐색하는 경로를 제공한다. 이렇게 R-트리 질의처리 구조는 범위 질의를 동작할 수 있고 다차원 질의 처리가 가능하다고, 차원이 증가할 수록 각 노드 정보와 이로 인해 증가하는 하위 노드의 수가 기하급수적으로 증가하므로 차원 이상의 다차원 구조에 적합하지 않다 [10].

[그림 4] R-트리에서의 탐색 과정

Fig 4, Traversal Process in the R-Tree

한편, 기존 질의처리 방법에서는 입력한 데이터가 중복된 질의 영역에 있다면 트리의 높이만큼 탐색하는 것이 아니라
만족되는 질의가 끝날 때까지 트리의 노드를 계속 탐색해야 한다. 스트림 서비스 환경에서는 수많은 데이터와 매우 다양한 범위 질의가 동반되기 때문에 대부분 질의가 중복된다. 결국 질의를 모두 찾기 위해서는 트리의 노드를 계속 방문해야 하기 때문에 처리 시간이 늘어지는 단점을 보이게 된다. 또한 R-트리라는 언제나 각 차원(온도, 습도)에 대한 데이터가 모두 입력되어야만 탐색을 수행하는 단점이 있다. 그리고 데이터가 입력 될 때마다 메번 최상위 노드부터 다시 탐색해야하기 때문에 스트림 환경에서 효과적인 탐색 결과를 보장하기 어렵다는 사실을 알 수 있다.

III. 제안하는 다중질의 처리구조

본 연구에서는 보다 효과적인 스트림 기반 질의처리를 지원하기 위해 (그림 5)에 보이는 사용자 범위 질의 정보를 담고 있는 질의 인덱스를 설계하고 이를 범위 질의 인덱스 (Range Query Index)라고 부른다. 범위 질의 인덱스는 기존 방법과 유사하게 범위 질의를 담고 있으나, 그럼에 보이는 것처럼 질의 범위 데이터들을 정렬한 형태로 인덱스를 구성하고 있고, 그 인덱스에는 질의 정보의 범위 시작 정보가 종료 정보가 담긴 점이 다르다.

(그림 6) 범위 질의 인덱스 (Range Query Index)의 예
Fig 5. Range Query Index Example

예를 들어 범위 질의 Q1(0 ≤ value ≤ 15)을 동록하면 범위 데이터인 0과 15 가 인덱스를 이루고, 인덱스 0에는 질의 범위의 시작점이 동록되고, 인덱스 5에는 질의 범위의 종료점이 동록된다. 새로운 질의가 동록 될 때마다 동일한 과정을 거쳐 각 질의를 동록하는데, 예를 들어, 또 다른 범위 질의 Q2(0 ≤ value ≤ 30)와 같이 동일한 점(즉 '0')을 포함하게 되는 질의가 동록하게 되면 그림과 같이 Q1에 대한 범위 질의 정보 다음에 동록해서 질의를 구성하게 된다. 결국 기존의 R-트리를 이용한 질의처리 방법(질의정보 + 영역정보)과는 다르게 범위 질의 정보만으로 질의처리 구조를 완성하게 된다.

3.1 1차원 범위 질의 인덱스

(그림 6)은 앞서 설명한 동록 방법으로 1차원 범위질의 갖는 질의 5개의 질의 인덱스를 갖는 예제이다. 위 예제에서 특정 스트림 데이터의 입력으로 만족되는 질의(들)을 찾는 과정은 다음과 같다.

(a) 입력 데이터 6인 경우

(b) 입력 데이터 17인 경우

(그림 6) 입력 데이터 값에 따른 질의 탐색과정의 예
Fig 6. Query Search Process Example with Input
해 만족하는 결과가 Query 1, 4, 2 라는 결과를 알려준다. 결국 인덱스 단계를 이동하면서 Query 1, 4 만족 → Query 2 이라는 사실 또한 알려주게 된다.

이후 후속 스트림 데이터가 입력되면 기존 절의 처리 방법과는 다르게 이전 절의 정보를 담고 있는 Query Table을 가지고 있기 때문에 인덱스 처음부터 찾는 것이 아니라 전에 만족되었던 인덱스 위치부터 탐색을 시작하게 된다. 예를 들어 (그림 6(b))처럼 다음 데이터로 17이 입력되면 이전에 인덱스 5까지 방문하였기 때문에 이 지점부터 외과 같은 방법으로 탐색을 시작한다. 결국 7 → 15로 인덱스를 차례로 방문하게 된다. 인덱스 7에서는 Query 3의 푸레그를 설정하면서 Query 3이 시작되고 있다는 사실을 알려준다. 다음 인덱스인 15에서는 Query 1, 30이 끝나는 정보와 Query 5가 시작되었다는 정보를 가지고 Query Table에 해당 Query 1, 3 을 0으로 초기화(reset)하고 Query 5의 푸레그를 1로 설정하면서 Query 1, 30에서 끝내고 Query 5에 진입한다는 사실을 알려준다. 결국 입력 데이터 17은 앞에서와 같이 만족 되는 절의가 Query 2, 4, 5 라는 결과를 알려주며 그 사이에 Query 1, 3에서 끝나는다는 사실 또한 알려준다.

![Table 1. Query Results and Meanings](image)

(표 1) 질의 결과값과 그 의미

<table>
<thead>
<tr>
<th>Query Result Types</th>
<th>Query Results</th>
<th>Query Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay</td>
<td>만족하는 질의에 달람이었다.</td>
<td></td>
</tr>
<tr>
<td>Step In</td>
<td>만족하는 질의에 달람이 있다.</td>
<td></td>
</tr>
<tr>
<td>Step Out</td>
<td>만족하는 질의에서 빠랐다.</td>
<td></td>
</tr>
</tbody>
</table>

(그림 6)와 (표 1)은 Query Table에서 위해 설립한 탐색 과정 결과 각각의 절의가 1과 0으로 Set, Reset 될 때 질의의 변화에 대한 상태를 보여주며, 이와 같이 기존 질의처리 방법은 만족하는 질의만 알려주는데 반해 범위 절의 인덱스 탐색 방법은 질의의 변화를 모두 알 수 있는 장점을 가져 다준다.

3.2 차차원 범위 절의 인덱스

차차원 점의처리를 구성하기 위해 기존 처리 방법에서는 모든 차원의 범위 정보를 하나의 질의 처리 시스템에 구성하여 매우 높은 복잡도를 갖는다. 하지만 본 연구에서 제안하는 범위 점의 인덱스 기법은 (그림 7)과 같이 1차원 범위 점의 인덱스를 각 차원별로 각각 구성하여 차차원 점의 처리를 구성하였다. 그리고 질의 정보를 알려주는 Query Table 또한 각 차원별로 제공하고, 각 차원에 대한 표현 방식을 알라주는 Operator를 두어서 Query 표현(으)에 &< 슈도, 슈도 || 슈도, 슈도 등)을 다양하게 동작 할 수 있도록 하였다. 이 와 같이 각 차원마다 독립적으로 질의 정보를 구성하기 때문에 질의 확장성을 편리하게 할 수 있는 장점이 있다.

!(그림 8)는 차차원 범위 절의 인덱스에서 2차원인 경우를 보이고 있는데, 각각의 차원이 독립적으로 구성되어 있기 때문에 Q1차원 두 개의 범위 조건이 모두 만족하는 경우와 Q2차원 한 차원의 조건만 만족하는 범위 점의를 모두 동적 할 수 있다. 기존 점의처리 기법에서는 Q5를 동작하기 위해서는 모든 차원이 전체 동작해야 하는 단점이 있었지만, 차차원 범위 절의 인덱스에서는 각각의 차원이 독립적으로 표현되기 때문에 한 차원만 동작하면 된다. 결국 기존 점의처리 기법에서 질의 표현을 위한 불필요한 용량을 줄일 수 있게 된 다.

(그림 9)는 2차원 범위 절의 인덱스에서 탐색 과정을 나타내고 있다. 차차원과 같은 방법으로 각 차원마다 탐색을 진행하고 각각의 질의 상황을 Query Table 동적함으로서 질의의 상황 변화를 알려줄 수 있다. 또한 Operator 동작으로 사용자 질의의 표현을 다양하게 지정 할 수 있다. 예를 들어
Query 2는 Query Table에서 Query 2에 대한 온도, 습도를 중에 하나만 Set 되면 끝바로 알려주면 되는 것이다. 그리고 1차원에서 동일하게 Query Table의 인덱스를 단계적으로 이동하면서 변화되기 때문에 (그림 9) 에 보이는 바와 같이 첫 번째 데이터가 입력되고 두 번째 데이터가 입력되었을 때 첫 번째 데이터가 만족하는 Query 1과 두 번째 데이터가 만족하는 Query 3만 알려주는 것이 아니라 Query 2가 저니했던 사실 또한 알려줄 수 있다. 다차원 범위 점의 인덱스도 역시 기존 점의 처리 방법에서 해결되지 못한 입력 데이터 변화에 대한 점의 변화를 알 수 있어 스트림 서비스 환경에 보다 적합하다는 것을 알 수 있다.

4.1 모의실험 환경

본 연구의 모의실험에 사용한 스트림 데이터를 생성하기 위한 특정은 다음과 같다. 실제로 지역성을 가지는 스트림 데이터의 특성을 나타내기 위해 Fluctuation Level을 설정하여 스트림 데이터를 생성하였다. Fluctuation Level은 현재 입력된 데이터 다음에 입력될 데이터가 나타나게 되는 범위로써 실제 스트림 데이터의 특성을 표현하기 위해 설정하였다. (그림 10)과 같이 Fluctuation Level의 변화를 두어 지역성을 가지는 경우와 아닌 경우 제한된 점의 처리 시스템이 스트림 환경에 얼마나 적합한지를 측정하기 위해 Fluctuation Level (0.1 ~ 1.0%)을 두어 Uniform Random Generation 하였다. 그리고 Stream Data는 10,000개로 동일하게 실험 하였다.

IV. 성능 평가
사용자 절의 [그림 11]에 보이는 바와 같이 2차원 절의 를 기반으로 World Space 0 ~ 10,000 범위 안에서 Uniform Random Generation (Generation Tool : Spatial Data Generator (c), University of Piraeus) 프로그램을 사용하여 무작위로 생성하였다. 절의를 1,000 ~ 10,000개까지 생성하면서 실제 스토립 환경에서 절의의 수 가 절의처리에 미치는 영향에 대해 실험하였다.

4.2 실험 및 성능 분석

범위 절의 인덱스에 대한 절의처리 성능 평가를 위해 절의 의 수, 절의 범위, 스토립 데이터의 변화 범위로 각도 변화시 키면서 실험을 진행하였다.

가. 절의의 수에 따른 성능

[그림 12]은 스토립 환경에서 절의 개수가 절의처리 성 능에 미치는 영향을 보여주는 그래프이다. 그래프에서 보듯이 R-트리의 경우 절의 개수가 많아질수록 탐색하는 영역이 많아지게 되고 중복되는 영역도 좋아지기 때문에 절의 탐색 횟수는 계속 늘어나게 된다. 하지만 제한된 범위 절의 인덱스 방법은 절의 개수에 따른 영향보다는 스토립 데이터의 변 동을 즉 지역성에 따라 인덱스를 탐색하는 횟수가 결정되기 때문에 지역성을 가진 스토립 데이터가 입력되면 거의 변동 없이 절의를 찾게 된다.

![그림 12: 절의 수에 따른 성능 변화](image)

나. 절의범위의 변화에 따른 성능

[그림 13]는 스토립 환경에서 절의의 범위가 절의처리 성 능에 미치는 영향을 나타낸 그래프이다. 이 그래프 역시 지역 성을 갖는 스토립 데이터이기 때문에 범위 절의 인덱스는 거 의 변동 없이 일정하게 절의를 찾게 된다. 하지만 R-트리는 절의 범위가 증가함에 따라 절의가 중복되는 경우가 늘어지기 때문에 절의 탐색을 할 경우 탐색이 증가하게 된다.

![그림 13: 절의범위에 따른 성능 변화](image)

다. 스토립의 변화폭에 따른 성능

[그림 14]는 스토립 환경에서 스토립 데이터의 지역성에 대한 변화가 절의 처리 성능에 미치는 영향을 나타낸 그래프이다. R-트리의 경우 절의 중복에 대해서는 탐색 횟수가 많아 지만 중복이 없는 경우에는 트리의 높이만큼 탐색하면 되 기 때문에 중복이 적음수록 탐색 횟수는 줄어든다. 이처럼 R-트리에서는 스토립 데이터의 지역성에 대한 변화는 탐색 횟수 에 영향을 주지 않는다는. 하지만 범위 절의 인덱스의 경우 스토립 데이터의 지역성이 크면 불필요한 탐색하는 인덱스는 절 점 많아지기 때문에 탐색 횟수는 계속 증가하게 된다.

![그림 14: 데이터 변화폭에 따른 성능 변화](image)

편 (15)과 같이 입력 데이터가 스토립 형태가 아닌 지역성이 매우 큰 환경에서는 제한된 범위 절의 인덱스는 정 정한 탐색 횟수를 보장 받지 못한다. 결국 이러한 환경에서는 기존 절의처리 기법보다 탐색 횟수가 커지는 성능을 보여주게 된다.
실험 결과에서 보듯이 지역성이 적은 스트림 데이터가 입
력되는 스트림 환경에서는 제안한 범위 질의 인덱스가 기존
질의처리 방법보다 더욱 빠르고 안정적인 질의처리 결과를
얻는다는 것을 알 수 있다. 본 실험에서는 앞서의 모의실험 환
경 하에, 기존의 R-트리를 사용한 방법과 본 연구에서 제안한
방법의 성능을 비교하였다.

VI. 결론

본 논문에서는 기존의 질의처리 방법에서 문제가 되었던
스트림 환경 기반의 입력 데이터에 대한 질의 탐색 성능과 다
차원 질의 표현에 대한 성능 개선을 연구하고 제안하였다. 그
리고 범위 질의 인덱스를 설계하여 스트림 서비스 환경에 효
율적인 질의처리 시스템을 구현하였고, 이를 바탕으로 모의실
현을 통해 기존 질의처리 방법과 성능을 비교한 결과, 스트림
환경에서는 범위 질의 인덱스 방법이 다양한 질의 표현이 가
능하고, 효과적으로 질의를 탐색할 수 있었다.

향후 연구 방향으로 본 논문에서 제안한 범위 질의 인덱스
를 실제 스트림 서버 아키텍처를 구현하여 실제 사용자가 다
중 질의를 쉽게 처리하는 환경에서 성능 평가를 하는 것이다. 또한
실제 스트림 데이터를 이용하여 질의처리에 대한 성능 평가를
추가적으로 수행해야 한다.

참고문헌

47-57, June 1984.

[2] Mladen Bestvina, "R-Trees in topology, geometry,
and group theory," Handbook of geometric
 topology R. J. Daverman and R. B. Sher
(editors), January 18, 1999.

Faloutsos, "The R+ Tree: A dynamic index for
 multi-dimensional objects," Department of
Computer Science University of Maryland

Kriegel, "The X-tree: An Index Structure for
High-Dimensional Data," Institute for Computer
Science, University of Munich, The 22ndVLDB
Conference Mumbai (Bombay), India, 1996.

J. Song, "BMQ-Index: Shared and Incremental
Processing of Border Monitoring Queries over
Data Streams," Korea Advanced Institute of
Science and Technology, MDM06, 2006.

Magdalena Balazirska, Hari Balakrishnan, Jon
Salz and Mike Stonbraker, MIT Computer Science
and Artificial Intelligence Lab. http://nms.lcs.mit.edu/
/projects/medusa/

Query processing," Univ of Berkeley, IEEE

[9] 서 석호, "고속 스트림 데이터에 대한 연속 질의 처리 아
키테처의 설계," 한국 외국어 대학교 전자정보공학과 석
사학위논문, 2005년.

저자 소개

이 동언 (Dong-Un Lee)
2006년 2월: 한국외국어대학교 전자정보공학부 학사
2008년 2월: 한국외국어대학교 전자정보공학부 석사
 관심분야: 임베디드시스템, 센서네트워크

이윤석 (Yunseok Rhee)
1988년 2월: 서울대학교 계산공학과 학사
1999년 2월: 한국과학기술원 전산학과 박사
1999년 현제: 한국외국어대학교 교수
 관심분야: 분산시스템, 임베디드컴퓨터

범위 질의 인력성을 이용한 스트림 데이터의 다중 질의처리 기법