DOI QR코드

DOI QR Code

Effects of Protein Supply from Soyhulls and Wheat Bran on Ruminal Metabolism, Nutrient Digestion and Ruminal and Omasal Concentrations of Soluble Non-ammonia Nitrogen of Steers

  • Kim, Jeong-Hoon (Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia) ;
  • Oh, Young-Kyoon (National Institute of Animal Science) ;
  • Kim, Kyoung-Hoon (National Institute of Animal Science) ;
  • Choi, Chang-Won (National Institute of Animal Science) ;
  • Hong, Seong-Koo (National Institute of Animal Science) ;
  • Seol, Yong-Joo (National Institute of Animal Science) ;
  • Kim, Do-Hyung (National Institute of Animal Science) ;
  • Ahn, Gyu-Chul (Department of Animal Science, Chungbuk National University) ;
  • Song, Man-Kang (Animal Resources Research Center, College of Animal Bioscience & Technology, Konkuk University) ;
  • Park, Keun-Kyu (National Institute of Animal Science)
  • Received : 2009.02.03
  • Accepted : 2009.05.06
  • Published : 2009.09.01

Abstract

Three beef steers fitted with permanent cannulae in the rumen and duodenum were used to determine the effects of protein supply from soyhulls (SH) and wheat bran (WB) on ruminal metabolism, blood metabolites, nitrogen metabolism, nutrient digestion and concentrations of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). In a 3${\times}$3 Latin square design, steers were offered rice straw and concentrates formulated either without (control) or with two brans to increase crude protein (CP) level (9 vs. 11% dietary DM for control and bran-based diets, respectively). The brans used were SH and WB that had similar CP contents but different ruminal CP degradability (52 vs. 80% CP for SH and WB, respectively) for evaluating the effects of protein degradability. Ruminal ammonia concentrations were higher for bran diets (p<0.01) than for the control, and for WB (p<0.001) compared to the SH diet. Similarly, microbial nitrogen and blood urea nitrogen were significantly increased (p<0.05) by bran and WB diets, respectively. Retained nitrogen tended (p<0.082) to be increased by SH compared with the WB diet. Intestinal and total tract CP digestion was enhanced by bran diets. In addition, bran diets tended (p<0.085) to increase intestinal starch digestion. Concentrations of SNAN fractions in RD and OD were higher (p<0.05) for bran diets than for the control, and for WB than for the SH diet. More rumendegraded protein supply resulting from a higher level and degradability of CP released from SH and WB enhanced ruminal microbial nitrogen synthesis and ruminal protein degradation. Thus, free amino acids, peptides and soluble proteins from microbial cells as well as degraded dietary protein may have contributed to increased SNAN concentrations in the rumen and, consequently, the omasum. These results indicate that protein supply from SH and WB, having a low level of protein (13 and 16%, respectively), could affect ruminal metabolism and nutrient digestion if inclusion level is relatively high (>20%).

Keywords

Soyhulls;Wheat Bran;Soluble nonammonia Nitrogen;Omasal Digesta;Nutrient Digestion

References

  1. AOAC. 1990. Official methods of analysis, 15th Edition. Association of Official Analytical Chemists, Arlington, Virginia, USA
  2. Borchers, R. 1977. Allantoin determination. Anal. Biochem. 79:612-613 https://doi.org/10.1016/0003-2697(77)90443-2
  3. Chaney, A. L. and E. P. Markbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-137
  4. Choi, C. W., A. Vanhatalo and P. Huhtanen. 2002c. Concentration and estimated flow of soluble non-ammonia nitrogen entering the omasum of dairy cows as influenced by different protein supplements. Agric. Food Sci. Finl. 11:79-91
  5. Lie, S. 1973. The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79:37-41 https://doi.org/10.1016/S0308-8146(96)00158-6
  6. National Research Council. 2001. Nutrient requirements of dairy cattle. 7th Edition. National Academy Press, Washington, DC. USA
  7. Nocek, J. E. and S. Tamminga. 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 74:3598-3629 https://doi.org/10.3168/jds.S0022-0302(91)78552-4
  8. Olmos Colmenero, J. J. and G. A. Broderick. 2006. Effect of dietary crude protein concentration on ruminal nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 89:1694-1703 https://doi.org/10.3168/jds.S0022-0302(06)72237-8
  9. Richards, C. J., K. C. Swanson, S. J. Paton, D. L. Harmon and G. B. Huntington. 2003. Pancreatic exocrine secretion in steers infused postruminally with casein and cornstarch. J. Anim. Sci. 81:1051-1056
  10. Roch-Ramel, F. 1967. An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens. Anal. Biochem. 21:372-381 https://doi.org/10.1016/0003-2697(67)90312-0
  11. Susmel, P., B. Stefanon, B. Spanghero and C. R. Mills. 1995. Nitrogen balance and partitioning of some nitrogen catabolites in milk and urine of lactating cows. Livest. Prod. Sci. 44:207-219 https://doi.org/10.1016/0301-6226(95)00074-7
  12. Robinson, P. H. and R. E. McQueen. 1994. Influence of supplemental protein source and feeding frequency on rumen fermentation and performance in dairy cows. J. Dairy Sci. 77:1340-1353 https://doi.org/10.3168/jds.S0022-0302(94)77073-9
  13. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208 https://doi.org/10.1079/BJN19740073
  14. Castillo, A. R., E. Kebreab, D. E. Beever, J. H. Barbi, J. D. Sutton, H. C. Kirby and J. France. 2001. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 79:247-253
  15. Veira, D. M., G. K. MacLoed, J. H. Burton and J. B. Stone. 1980. Nutrition of the weaned Holstein calf. II. Effect of dietary protein level on nitrogen balance, digestibility and feed intake. J. Anim. Sci. 50:945-951
  16. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  17. Chen, G., C. J. Sniffen and J. B. Russell. 1987. Concentration and estimated flow of peptides from the rumen of dairy cattle: Effects of protein quantity, protein solubility and feeding frequency. J. Dairy Sci. 70:983-992 https://doi.org/10.3168/jds.S0022-0302(87)80103-0
  18. Greenberg, N. A. and W. P. Shipe. 1979. Comparison of the abilities of trichloroacetic, picric, sulfosalicylic, and tungstic acids to precipitate protein hydrolysates and proteins. J. Food Sci. 44:735-737 https://doi.org/10.1111/j.1365-2621.1979.tb08487.x
  19. Fenton, T. W. and M. Fenton. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59:631-634 https://doi.org/10.4141/cjas79-081
  20. Reynal, S. M. and G. A. Broderick. 2005. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 88:4045-4064 https://doi.org/10.3168/jds.S0022-0302(05)73090-3
  21. SAS Institute. 2002. $SAS^{{\circledR}}$ User's guide: Statistics. Version 9.1 Edition. Statistical Analysis Systems Institute Inc., Cary, NC
  22. Erwin, E. S., G. T. Marco and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771 https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  23. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070-2107 https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  24. Reynal, S. M., I. R. Ipharraguerre, M. Lineiro, A. F. Brito, G. A. Broderick and J. H. Clark. 2007. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. J. Dairy Sci. 90:1887-1903 https://doi.org/10.3168/jds.2006-158
  25. Grieve, D. G., E. E. Wheeler, Y. Yu and G. K. MacLeod. 1980. Effects of dry or ensiled feeds and protein percent on milk production and nitrogen utilization by lactating cows. J. Dairy Sci. 63:1282-1290 https://doi.org/10.3168/jds.S0022-0302(80)83079-7
  26. Licitra, G., T. M. Hernandez and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358 https://doi.org/10.1016/0377-8401(95)00837-3
  27. Merchen, N. R. 1988. Digestion, absorption and excretion in ruminants. In: The ruminant animal (Ed. D. C. Church). Simon & Schuster, NY. USA, pp.172-201
  28. Nguyen, T. V., D. G. St. Louis, A. I. Orr and B. J. Rude. 2008. Supplementing maize or soybean hulls to cattle fed rice straw: intake, apparent digestion, in situ disappearance and ruminal dynamics. Asian-Aust. J. Anim. Sci. 21:807-817
  29. Wright, T. C., S. Moscardini, P. H. Luimes, P. Susmel and B. W. McBride. 1998. Effects of rumen-undegradable protein and feed intake on nitrogen balance and milk protein production in dairy cows. J. Dairy Sci. 81:784-793 https://doi.org/10.3168/jds.S0022-0302(98)75635-8
  30. Choi, C. W., A. Vanhatalo, S. Ahvenjärvi and P. Huhtanen. 2002b. Effects of several protein supplements on flow of soluble nonammonia nitrogen from the forestomach and milk production in dairy cows. Anim. Feed Sci. Technol. 102:15-33 https://doi.org/10.1016/S0377-8401(02)00251-1
  31. Cressman, S. G., D. G. Grieve, G. K. MacLeod, E. E. Wheeler and L. G. Young. 1980. Influence of dietary protein concentration on milk production by dairy cattle in early lactation. J. Dairy Sci. 63:1839-1847 https://doi.org/10.3168/jds.S0022-0302(80)83149-3
  32. Davidson, S., B. A. Hopkins, D. E. Diaz, S. M. Bolt, C. Brownie, V. Fellner and L. W. Whitlow. 2003. Effects of amounts and degradability of dietary protein on lactation, nitrogen utilization, and excretion in early lactation Holstein cows. J. Dairy Sci. 86:1681-1689 https://doi.org/10.3168/jds.S0022-0302(03)73754-0
  33. Chen, X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: An overview of technical details. Int. Feed Res. Unit, Occasional Publ. Rowett Research Institute, Aberdeen, UK.
  34. Flack, C. P. and J. W. Woollen. 1984. Prevention of interference by dextran with biuret-type assay of serum proteins. Clin. Chem. 30:559-561
  35. Huhtanen, P., P. G. Brotz and L. D. Satter. 1997. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows. J. Anim. Sci. 77:1380-1392
  36. Oh, Y. K., J. H. Kim, K. H. Kim, C. W. Choi, S. W. Kang, I. S. Nam, D. H. Kim, M. K. Song, C. W. Kim and K. K. Park. 2008. Effects of level and degradability of dietary protein on ruminal fermentation and concentrations of soluble non-ammonia nitrogen ruminal and omasal digesta of Hanwoo steers. Asian-Aust. J. Anim. Sci. 21:392-403
  37. Orskov, E. R. and P. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. Cambridge. 92:499-503 https://doi.org/10.1017/S0021859600063048
  38. Robinson, P. H., D. M. Veira and M. Ivan. 1998. Influence of supplemental protein quality on rumen fermentation, rumen microbial yield, forestomach digestion and intestinal amino acid flow in late lactation Holstein cows. Can. J. Anim. Sci. 78:95-105 https://doi.org/10.4141/A97-054
  39. Stewart, C. S. 1977. Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 33:497-502
  40. Taniguchi, K., G. B. Huntington and B. P. Glenn. 1995. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. J. Anim. Sci. 73:236-249 https://doi.org/10.3168/jds.2008-1521
  41. Littell,R. C., P. R. Henry and C. B. Ammerman. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76:1216-1231
  42. Choi, C. W., A. Vanhatalo and P. Huhtanen. 2003. Effects of type of grass silage and level of concentrate on the flow soluble non-ammonia nitrogen entering the omasum of dairy cows. J. Anim. Feed Sci. 12:3-22
  43. Hiltner, P. and B. A. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46:642-648
  44. Kennedy, P. M. and L. P. Milligan. 1980. The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Can. J. Anim. Sci. 60:205-221 https://doi.org/10.4141/cjas80-030
  45. Klopfenstein, T. and F. Owen. 1987. Soybean hulls, an energy supplement for ruminants. Anim. Health Nutr. 43:28-32
  46. Tamminga, S. 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75:345-357 https://doi.org/10.3168/jds.S0022-0302(92)77770-4
  47. Richards, C. J., A. F. Branco, D. W. Bohnert, G. B. Huntington, M. Macari and D. L. Harmon. 2002. Intestinal starch disappearance increased in steers abomasally infused with starch and protein. J. Anim. Sci. 80:3361-3368
  48. Russell, J. B., C. J. Sniffen and P. J. Van Soest. 1983. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J. Dairy Sci. 66:763-769 https://doi.org/10.3168/jds.S0022-0302(83)81856-6
  49. Ahvenjärvi, S., A. Vanhatalo, P. Huhtanen and T. Varvikko. 2000. Determination of reticulo-rumen and whole-stomach digestion in lactating cows by omasal canal or duodenal sampling. Br. J. Nutr. 83:67-77
  50. Choi, C. W., S. Ahvenjarvi, A. Vanhatalo, V. Toivonen and P. Huhtanen. 2002a. Quantitation of the flow of soluble nonammonia nitrogen entering the omasal canal of dairy cows fed silage based diets. Anim. Feed Sci. Technol. 96:203-220 https://doi.org/10.1016/S0377-8401(01)00348-0
  51. Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67:10-15 https://doi.org/10.1016/0003-9861(57)90241-2