Bacterial Inoculant Effects on Corn Silage Fermentation and Nutrient Composition

  • Jalc, D. (Institute of Animal Physiology, Slovak Academy of Sciences) ;
  • Laukova, Andrea (Institute of Animal Physiology, Slovak Academy of Sciences) ;
  • Pogany Simonova, M. (Institute of Animal Physiology, Slovak Academy of Sciences) ;
  • Varadyova, Z. (Institute of Animal Physiology, Slovak Academy of Sciences) ;
  • Homolka, P. (Research Institute of Animal Production)
  • Received : 2008.05.15
  • Accepted : 2008.02.23
  • Published : 2009.07.01


The survival and effect of three new probiotic inoculants (Lactobacillus plantarum CCM 4000, L. fermentum LF2, and Enterococcus faecium CCM 4231) on the nutritive value and fermentation parameters of corn silage was studied under laboratory conditions. Whole corn plants (288.3 g/kg DM) were cut and ensiled at $21^{\circ}C$ for 105 days. The inoculants were applied at a concentration of $1.0{\times}10^{9}$ cfu/ml. Uninoculated silage was used as the control. The chopped corn was ensiled in 40 plastic jars (1 L) divided into four groups (4${\times}$10 per treatment). All corn silages had a low pH (below 3.55) and 83-85% of total silage acids comprised lactic acid after 105 days of ensiling. The probiotic inoculants in the corn silages affected corn silage characteristics in terms of significantly (p<0.05-0.001) higher pH, numerically lower crude protein content and ratio of lactic to acetic acid compared to control silage. However, the inoculants did not affect the concentration of total silage acids (acetic, propionic, lactic acids) as well as dry matter digestibility (IVDMD) of corn silages in vitro. In the corn silages with three probiotic inoculants, significantly (CCM 4231, CCM 4000) lower n-6/n-3 ratio of fatty acids was detected than in control silage. Significant decrease in the concentration of $C_{18:1}$, and significant increase in the concentration of $C_{18:2}$ and $C_{18:3}$ was mainly found in the corn silages inoculated with the strains E. faecium CCM 4231 and L. plantarum CCM 4000. At the end of ensiling, the inoculants were found at counts of less than 1.0 log10 cfu/g in corn silages.


Corn Silage;Probiotics;Composition;Quality


  1. Abdehadia, L. O., F. J. Santini and G. A. Gagliostro. 2005. Corn silage or high moisture corn supplements for beef heifers grazing temperate pastures: effects on performance, ruminal fermentation and in situ pasture digestion. Anim. Feed Sci. Technol. 118:63-78
  2. Baytok, E., T. Aksu, M. A. Karsli and H. Muruz. 2005. The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turk. J. Vet. Anim. Sci. 29:469-474
  3. Chagnaud, P., K. Machinis, L. A. Coutte, A. Marecat and A. Mercenier. 2001. Rapid PCR-based procedure to indentify lactic acid bacteria: application to six common Lactobacillus species. J. Microbiol. Meth. 44:139-148
  4. Filya, I. 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86:3575-3581
  5. Filya, I. and E. Sucu. 2007. The effect of bacterial inoculants and a chemical preservative on the fermentation and aerobic stability of whole-crop cereal silages. Asian-Aust. J. Anim. Sci. 20:378-384
  6. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analyses. Agriculture Handbook No. 379, USDA, Washington DC, USA, pp. 1-20
  7. Marci\check{n}\acute{a}kov\acute{a}, M. 2006. Probiotic microorganisms in the feed and the digestive tract of animals and their role in prevention. PhD Thesis, IAP SAS, Ko\check{s}ice, pp. 1-145
  8. Nemcov\acute{a}, R. 1989. Rumen lactobacilli and their impact for the practice. PhD Thesis, UVM, Košice, pp. 1-170
  9. Shaver, R. D. 2003. Practical application of new forage quality tests. Proceedings of the $6^{th}$ Western Dairy Management Conference, Reno, NV, USA. pp. 22-25
  10. Sieber, R., M. Collomb, A. Aeschliemann, P. Jelen and H. Eyer. 2004. Impact of microbial cultures on conjugated linoleic acid in dairy products- a review. Int. Dairy J. 14:1-15
  11. Sukhija, P. S. and D. L. Palmquist. 1988. Rapid method for the determination of total fatty acid content and composition of feedstuffs and faeces. J. Agric. Food Chem. 36:1202-1206
  12. Chilliard, Y., A. Ferlay and M. Doreau. 2001. Effect of different type of forages, animal fat or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Prod. Sci. 70:31-48
  13. Woodford, N., M. C. Egelton and D. Morrison. 1997. Comparison of PCR with phenotypic methods for the speciation of enterococci. Plenum Press, New York, 47:405-409
  14. Sucu, E. and I. Filya. 2006. Effects of homofermentative lactic acid bacterial inoculants on the fermentation and aerobic stability characteristics of low dry matter corn silages. Turk. J. Vet. Anim. Sci. 30:83-88
  15. McDonald, P., A. R. Henderson and S. J. E. Heron. 1991. Plant Enzymes. In: The biochemistry of silage, chapt.3, 2nd. ed. (Ed. P. McDonald, A. R. Henderson and S. J. E. Heron), Chalcomb Publications, Aberystwyth, UK, pp. 48-80
  16. Huhtanen, P., Nousiainen, J. I. Khalili, H. Jaakkola and T. Haikkil\ddot{a}. 2003. Relationship betwen silage fermentation characteristics and milk production parameters: analyses of literature data. Livest. Prod. Sci. 81:57-73
  17. Jalc, D., A. Laukova, M. Simonova, Z. Varadyovaand P. Homolka. 2009. The use of bacterial inoculants for grass silage: their effects on nutrient composition and fermentation parameters in grass silages. Czech J. Anim. Sci. 54:84-91
  18. Weinberg, Z. G., O. Shatz, Y. Chen, E. Yosef, M. Nikbahat, D. Ben-Ghedalia and J. Miron. 2007. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. J. Dairy Sci. 90:4754-4762
  19. Koc, F., L. Coskuntuna and L. Ozduven. 2008. The effect of bacteria + enzyme mixture silage inoculant on the fermentation characteristics,cell wall contents and aerobic stabilities of maize silage. Pakistan J. Anim. Sci. 7:222-226
  20. Strompfov\acute{a}, V. 2004. Production of bacteriocins and probiotic properties of microorganisms in the animals digestive tract and their physiological impact. PhD Thesis, IAP SAS, Ko\check{s}ice, pp.1-117
  21. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists (Ed. K. Herlick), Arlington, VA, USA, pp. 1230
  22. Laukov\acute{a}, A., M. Marekov\acute{a} and P. Javorsk\acute{y}. 1993. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett. Appl. Microbiol. 16:257-260
  23. Lee, S. W., Y. Chouinard and B. N. Van. 2006. Effect of some factors on the concentration of linolec acid in forages. Asian- Aust. J. Anim. Sci. 20:1525-1538
  24. Jalc,D., A. Laukova,Z. Varadyova,P. Homolka and V. Koukolova.2008. Effect of inoculated grass silages on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Anim. Feed Sci. Technol. doi:10.1016/j. anifeedsci.2008.11.004
  25. Weinberg, Z. G., Y. Chen and M. Gamburg. 2004. The passage of lactic acid bacteria from silage into rumen fluid, in vitro studies. J. Dairy Sci. 87:3386-3397
  26. Chilliard, Y., F.Glasser, A. Ferlay, L. Bernard, J. Rouel and M. Doreau. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109:828-855
  27. Bethier, F. and S. D. Ehrlich. 1998. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol. Lett. 161:97-106
  28. Jenkins, T. C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76:3851-3863
  29. Kozakai, K., T. Nakamura, I. Kobayashi, T. Tanigawa, I. Osaka, S. Kawamoto and S. Hara. 2007. Effect of mechanical processing of corn silage on in vitro ruminal fermentation, and in situ bacterial colonization and dry matter degradation. Can. J. Anim. Sci. 87:259-267
  30. V\acute{a}radyov\acute{a}, Z., M. Baran and I. Zeleňák. 2005. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol. 123-124:81-94
  31. Elgersma, A., S. Tamminga and G. Ellen. 2006. Modifying milk composition through forage. Anim. Feed Sci. Technol. 131:207-225
  32. Elgersma, A., G. Ellen, H. van der Horst, B. G. Muuse, H. Boer and S. Tamminga. 2003. Comparison of the fatty acid composition of fresh and ensiled perennial ryegrass (Lolium perenne, L.) affected by cultivar and regrowth interval. Anim. Feed Sci. Technol. 108:191-205
  33. Naumann, C. and R. Bassler. 1997. Methodenbuch. Band III. Die chemische Untersuchung von Futtermittelm. VDLUFA-Verlag, Darmstadt, Germany
  34. Saarisalo, E., E. Skytta, A. Haikara, T. Jalava and S. Jaakkola. 2007. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 102:327-336
  35. Bessa, R. J., J. Santos-Silva, J. M. Ribeiro and A. V. Portugal. 2000. Reticulo-rumen biohydrogenation and enrichment of ruminal edible products with linoleic acid conjugated isomers. Appl. Environ. Microbiol. 63:201-211
  36. Nemcova, R. 1997. Criteria for selection of lactobacilli for probiotic use. Vet. Med.-Czech, 42:19-27
  37. Coakley, M., R. P. Ross, M. Nordgren, G. Fitzgerald, R. Devery and C. Stanton. 2003. Conjugated linoleic acid biosynthesis by human- derived Bifidobacterium species. J. Appl. Microbiol. 94:138-145
  38. Huhtanen, P., H. Khalili, J. I. Nousiainen, M. Rinne, S. Jaakkola, T. Heikkilä and J. Nousiainen. 2002. Prediction of the relative intake potential of grass silage by dairy cows. Livest. Prod. Sci. 73:111-130
  39. Kung, L. Jr. and R.Shaver. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage. 3:1-5

Cited by

  1. Silage Quality of Rations Based on in situ Sorghum-Indigofera vol.16, pp.3, 2017,