Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato

  • Kim, Sun-Hyung (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Wan-Keun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Yun-Hee (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwon, Suk-Yun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Haeng-Soon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, In-Chul (Department of Biology, Daejeon University) ;
  • Kwak, Sang-Soo (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2009.05.31


Sweetpotato (Ipomoea batatas (L). Lam.) is relatively tolerant to unfavorable growth conditions such as drought, yet has not been exploited to provide a better understanding of the molecular basis of drought stress tolerance. We obtained 983 high-quality expressed sequence tags of 100 bp or longer (average length of 700 bp) from cDNA libraries of detached white fibrous root tissues by subjecting them to dehydration for 6 h. The 431 cDNAs were each assigned a function by alignment using the BLASTX algorithm. Among them, three genes associated with various abiotic stresses and nine genes not previously associated with drought stress were selected for expression pattern analysis through detailed reverse transcription-polymerase chain reaction. The direct and indirect relationships of the 12 genes with drought tolerance mechanisms were ascertained at different developmental stages and under various stress conditions.


Abiotic stress;Drought stress;Expressed sequence tag;Root;Sweetpotato


  1. Boyer, J. S. (1982) Plant productivity and environment. Science 218, 443-448
  2. You, M. K., Hur, C. G., Ahn Y. S., Suh, M. C., Jeong, B. C., Shin, J. S. and Bae, J. M. (2003) Identification of genes possibly related to storage root induction in sweetpotato. FEBS Lett. 536, 101-105
  3. Park, J. M., Park, C. J., Lee, S. B., Ham, B. K., Shin, R. Y. and Paek, K. H. (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13, 1035-1046
  4. Agrawal, G. K., Iwahashi, H. and Rakwal, R. (2003) Small GTPase 'Rop': molecular switch for plant defense responses. FEBS Lett. 546, 173-180
  5. Kim, K. C., Hur, Y. K. and Maeng, J. S. (2003) Isolation of a gene, PnFL-1, expressed in Pharbitis cotyledons during floral induction. Mol. Cells 16, 54-59
  6. Yang, Z. (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14, S375-S388
  7. Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U. and Kjellbom, P. (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol. Biol. 59, 469-484
  8. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Monitoring expression profiles of rice genes under cold, drought, and high salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767
  9. Potenza, C., Thomas, S. H. and Sengupta-Gopalan, C. (2001) Genes induced during early response to Meloidogyne incognita in roots of resistant and susceptible alfalfa cultivars. Plant Sci. 161, 289-299
  10. Chen, J. Q., Dong, Y., Wang, Y. J., Liu, Q., Zhang, J. S. and Chen, S. Y. (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor. Appl. Genet. 107, 972-979
  11. Zimeri, A. M., Dhankher, O. P., McCaig, B. and Meagher, R. B. (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol. Biol. 58, 839-855
  12. Weyman, P. D., Pan, Z., Feng, Q., Gilchrist, D. G. and Bostock, R. M. (2005) A circadian rhythm-regulated tomato gene is induced by arachidonic acid and Phythophthora infestans infection. Plant Physiol. 140, 235-248
  13. Mariaux, J. B., Bockel, C., Salamini, F. and Bartels, D. (1998) Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 38, 1089-1099
  14. Seong, E. S, Choi, D., Cho, H. S., Lim, C. K., Cho, H. J. and Wang, M. H. (2007) Characterization of a stress-responsive ankyrin repeat-containing zinc finger protein of Capsicum annuum (CaKR1). J. Biochem. Mol. Biol. 40, 852-958
  15. Seki, M., Narusaka, M., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. (2001) Arabidopsis encyclopedia using full -length cDNAs and its application. Plant Physiol. Biochem. 39, 211-220
  16. Hasegawa, P., Bressan, R., Zhu, J. K. and Bohnert, H. (2000) Plant cellular and molecular response to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463-499
  17. Memelink, J., Verpoorte, R., Kijne, J. W. (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6, 212-219
  18. Chinnusamy, V., Schumaker, K. and Zhu, J. K. (2003) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J. Exp. Bot. 55, 225-236
  19. Ma, M., Lau, P. S., Jiam Y.T., Tsang, W. K., Lam, S., Tam, N. and Wong, Y. S. (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci. 164, 51-60
  20. Dombrowski, J. E. (2003) Salt stress activation of woundrelated genes in tomato plants. Plant Physiol. 132, 2098-2107
  21. Kumagai, T., Umemura, Y., Baba, T. and Iwanaga, M. (1990) The inheritance of beta-amylase null in storage roots of sweetpotato, Ipomoea batatas (L.). Lam. Theor. Appl. Genet. 79, 369-370
  22. Zhu, J. K. (2000) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53, 247-273
  23. Kim, Y. H., Yang, K. S., Kim, C. Y., Ryu, S. H., Song, W. K., Kwon, S. Y., Lee, H. S., Bang, J. W. and Kwak, S. S. (2008) Molecular cloning of peroxidase cDNAs from dehydration- treated fibrous roots of sweetpotato and their differential expression in response to stress. BMB reports 41, 259-265
  24. Xiong, L., Schumaker, K. S. and Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14, Suppl. S165-183
  25. Lee, J. H., Kim, D. M., Lee, J. H., Kim, J. M., Bang, J. W., Kim, W.T. and Pai, H. S. (2005) Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta. 222, 211-224
  26. Lim, C. C., Liu, J. Z. and Pua, E. C. (2002) Characterization of S adenosylmethionine synthetase genes and its expression is associated with ethylene synthesis in mustard (Brassica juncea). Physiol. Plant. 116, 522-530
  27. Seki. M., Narusaka, M., Kamiya, A., Ishida, J., Satou, M., Sakurai, T., Nakajima, M., Enju, A., Akiyama, K., Oono, Y., Muramatsu, M., Hayashizaki, Y., Kawai, J., Carninci, P., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shinagawa, A. and Shinozaki, K. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141-147
  28. Ghuman, B. S., Lal, R. (1983) Growth and plant-water relations of sweetpotato (Ipomoea batata) as affected by soil moisture regimes. Plant and Soil 70, 95-106
  29. Ishitani, M., Liu, J., Halfter, U., Kim, C. S., Shi, W. and Zhu, J. K. (2000) SOS3 Function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12, 1667-1678
  30. Marivet, J. A., Margis-Pinheiro, M. A., Frendo, P. A. and Burkard, G. A. (1994) Bean cyclophilin gene expression during plant development and stress conditions. Plant Mol. Biol. 26, 1181-1189
  31. Scheideler, M., Schlaich, N. L., Fellenberg, K., Beissbarth, T., Hauser, N. C., Vingron, M., Slusarenko, A. J. and Hoheisel, J. D. (2002) Monitoring the switch from housekeeping to pathogen defense metabolism Arabidopsis thaliana using cDNA arrays. J. Biol. Chem. 277, 10555-10561
  32. Tanaka, M., Takahata, Y. and Nakatani, M. (2005) Analysis of genes developmentally regulated during storage root formation of sweetpotato. J. Plant Physiol. 162, 91-102
  33. Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410-417
  34. Hall, A. (1998) G proteins and small GTPases: distant relatives keep in touch. Science 280, 2074-2075
  35. Halfter, U., Ishitani, M. and Zhu, J. K. (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. U.S.A. 97, 3735-3740

Cited by

  1. An IbEF1 from sweet potato promotes flowering in transgenic tobacco vol.33, pp.4, 2011,
  2. Water-deficit tolerant identification in sweet potato genotypes (Ipomoea batatas (L.) Lam.) in vegetative developmental stage using multivariate physiological indices vol.162, 2013,
  3. Ectopic expression of NtEF1 and NtEF2 promotes flowering and alters floral organ identity in Nicotiana tabacum vol.9, pp.1, 2015,
  4. Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions vol.40, pp.4, 2013,
  5. Characterization and expression pattern of IbPRP1 and IbPRP2 stress-related genes from sweetpotato vol.32, pp.5, 2010,
  6. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves vol.169, pp.11, 2012,
  7. Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars vol.193-194, 2012,
  8. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli vol.233, pp.3, 2011,
  9. Stable Internal Reference Genes for the Normalization of Real-Time PCR in Different Sweetpotato Cultivars Subjected to Abiotic Stress Conditions vol.7, pp.12, 2012,