Effect of the far infrared irradiated water on the growth of the cotyledons, hypocotyls and roots of the spring radishes

원적외선 처리수가 봄 무의 자엽, 하배축, 뿌리 성장에 미치는 영향

  • Cho, Bong-Heuy (Department of Life Science, University of Suwon, Gyeonggi Center of Women into Science and Engineering, Institute for natural Science)
  • 조봉희 (수원대학교 자연과학대학 생명과학과 WISE 경기지역센터, 기초과학연구소)
  • Received : 2009.03.06
  • Accepted : 2009.06.17
  • Published : 2009.08.25

Abstract

The germination rate of radishes grown with the far infrared irradiated water and drinking water was 100% and 78% respectively. The far infrared irradiated water stimulated the cell division of the cotyledons and enlarged the cell sizes both in the dark and in the light. In the dark and light conditions, the size of the cotyledons of transversal axis and longitudinal axis grown with the far infrared irradiated water was bigger than that grown with the drinking water. The content of chlorophyll and the consumption of $CO_2$ of the cotyledons grown with the far infrared irradiated water were higher, respectively. Osmotic pressure of the cotyledons grown with the far infrared irradiated water was 1.25 factors higher than that grown with the drinking water. The water potential of the cotyledons grown with the far infrared irradiated water was more negative value. The length of hypocotyls grown with the far infrared irradiated water was 2.18 factors longer in the dark, 1.99 factors longer in the light than that grown with the drinking water and the radish roots grown with the far infrared irradiated water were larger, respectively.

Keywords

Far infrared irradiated water;cotyledon;hypocotyl;root;water potential

References

  1. J. S. Kim, E. K. Lee, J. Y. Song, H. G. Kim and Y. B. Lee, Kor. J. Environ. Biol. 16, 47-51(2000)
  2. 정구영, 백우현, 윤천기, 한국환경과학회지, 9, 423-429(2000)
  3. P. Lampman, K. Vyvyan, Introduction to spectroscopy, Brooks/Cole, Cengage Learning, 49(2009)
  4. C. F. Atkinson, Sci. 7, 7-12 (1989)
  5. 진갑덕, 이신웅, 이수근, 자원문제연구소, 5, 55-68(1986)
  6. E. S. Knipling, Ecology, 48, 1038-1041(1967) https://doi.org/10.2307/1934562
  7. S. Stan, A. C. Croitoru, Stim Newl. 1, 23-25(1970)
  8. I. S. Lee, D. S. Kim, S. J. Lee, H. S. Song, Y. P. Lim and Y. I. Lee, Kor. J. Plant Biotech. 30, 19-25(2003) https://doi.org/10.5010/JPB.2003.30.1.019
  9. J. H. An, J. S. Kim, J. H. Jeong, S. M. Oh and S. T. Kwon, Kor. J. Plant Biotech. 30, 201-206(2003) https://doi.org/10.5010/JPB.2003.30.2.201
  10. R. M. Mireckl and A. H. Teramura, Plant Physiol. 74, 475-480(1984) https://doi.org/10.1104/pp.74.3.475
  11. E. K. Lee, J. S. Kim, Y. K. Lee, and Y. B. Lee, J. Kor. Soc. Horticultural Sci. 39, 670-675(1998)
  12. 백우현, 대한온열종양학회, 1, 61-67(1996)
  13. 조봉희, 한국분석과학회지, 21, 279-283(2008)
  14. 정구영, 백우현, 대한온열종양학회, 3, 51-58(1998)
  15. 박종욱, 최태섭, 조명, 전기설비학회지, 135, 32- 40(1999)
  16. J. A. Bunce, D. T. Patterson, M. M. Pect and R. S. Albert, Plant Physiol. 60, 255-258(1970)
  17. S. C. Sheppard and W. G. Evenden, Ca. J. Plant Sci. 66, 431-435(1986) https://doi.org/10.4141/cjps86-061
  18. R. O. Slater, Annu. Rev, Plant Physiol. 13, 351- 378(1962) https://doi.org/10.1146/annurev.pp.13.060162.002031
  19. H. Y. Kim, I. J. Lee, D. H. Shin and K. U. Kim, Kor. J. Life Sci. 8, 272-278(1998)
  20. C. W. Ross, Plant Physiology Laboratory Manual, Wadsworth, Pub. Comp. Inc. Belmount, California, 96- 98(1974)
  21. J. S. Kim, E. K. Lee, M. H. Back, D. H. Kim and Y. B. Lee, Kor. J. Eviron. Biol. 19, 58-61(2000)