DOI QR코드

DOI QR Code

Dietary Transformation of Lipid in the Rumen Microbial Ecosystem

  • Kim, Eun Joong ;
  • Huws, Sharon A. ;
  • Lee, Michael R.F. ;
  • Scollan, Nigel D.
  • Published : 2009.09.01

Abstract

Dietary lipids are rapidly hydrolysed and biohydrogenated in the rumen resulting in meat and milk characterised by a high content of saturated fatty acids and low polyunsaturated fatty acids (PUFA), which contributes to increases in the risk of diseases including cardiovascular disease and cancer. There has been considerable interest in altering the fatty acid composition of ruminant products with the overall aim of improving the long-term health of consumers. Metabolism of dietary lipids in the rumen (lipolysis and biohydrogenation) is a major critical control point in determining the fatty acid composition of ruminant lipids. Our understanding of the pathways involved and metabolically important intermediates has advanced considerably in recent years. Advances in molecular microbial technology based on 16S rRNA genes have helped to further advance our knowledge of the key organisms responsible for ruminal lipid transformation. Attention has focused on ruminal biohydrogenation of lipids in forages, plant oils and oilseeds, fish oil, marine algae and fat supplements as important dietary strategies which impact on fatty acid composition of ruminant lipids. Forages, such as grass and legumes, are rich in omega-3 PUFA and are a useful natural strategy in improving nutritional value of ruminant products. Specifically this review targets two key areas in relation to forages: i) what is the fate of the lipid-rich plant chloroplast in the rumen and ii) the role of the enzyme polyphenol oxidase in red clover as a natural plant-based protection mechanism of dietary lipids in the rumen. The review also addresses major pathways and micro-organisms involved in lipolysis and biohydrogenation.

Keywords

Lipid;Biohydrogenation;Rumen;Microbial Ecosystem;Chloroplast;PPO

References

  1. Collomb, M., U. Butikofer, R. Sieber, B. Jeangros and J. O. Bosset. 2002. Composition of fatty acids in cow's milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Intl. Dairy J. 12:649-659 https://doi.org/10.1016/S0958-6946(02)00061-4
  2. Dawson, R. M. C. and P. Kemp. 1969. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 115:351-352
  3. Dewhurst, R. J., K. J. Shingfield, M. R. F. Lee and N. D. Scollan. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 131:168-206 https://doi.org/10.1016/j.anifeedsci.2006.04.016
  4. Doreau, M. and A. Ferlay. 1994. Digestion and utilisation of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396 https://doi.org/10.1016/0377-8401(94)90039-6
  5. Fotouhi, N. and T. C. Jenkins. 1992. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. J. Dairy Sci. 75:1527-1532 https://doi.org/10.3168/jds.S0022-0302(92)77909-0
  6. Harfoot, C. G. 1978. Lipid metabolism in the rumen. Prog. Lipid Res. 17:21-54
  7. Harfoot, C. G. and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall. London. pp.382-426
  8. Harfoot, C. G., R. C. Noble and J. H. Moore. 1973. Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 132:829-832
  9. Hungate, R. E. 1966. The Rumen and its Microbes. Academic press, London and New York
  10. Hungate, R. E., J. Reichl and R. Prins. 1971. Parameters of fermentation in a continuously fed sheep: evidence of a microbial rumination pool. Appl. Microbiol. 22:1104-1113
  11. Huws, S. A., M. R. F. Lee, S. Muetzel, R. J. Wallace and N. D. Scollan. 2006. Effect of forage type and level of fish oil inclusion on bacterial diversity in the rumen. Reprod. Nutr. Dev. 46(Suppl. 1):S99
  12. Igarashi, K. and T. Yasui. 1985. Oxidation of free methionine and methionine residues in protein involved in the browning reaction of phenolic compounds. Agric. Biol. Chem. 49:2309-2315 https://doi.org/10.1271/bbb1961.49.2309
  13. Jenkins, T. C., R. J. Wallace, P. J. Moate and E. E. Mosley. 2008. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86:397-412 https://doi.org/10.2527/jas.2007-0588
  14. Kemp, P., R. W. White and D. J. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114 https://doi.org/10.1099/00221287-90-1-100
  15. Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel, R. J. Wallace and N. D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896
  16. Kim, Y. J., R. H. Liu, J. L. Rychlik and J. B. Russell. 2002. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Microbiol. 92:976-982 https://doi.org/10.1046/j.1365-2672.2002.01610.x
  17. Kopecny, J., M. Zorec, J. Mrazek, Y. Kobayashi and R. Marinsek-Logar. 2003. Butyrivibrio hungatei sp nov and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int. J. Syst. Evol. Microbiol. 53:201-209 https://doi.org/10.1099/ijs.0.02345-0
  18. Lee, M. R. F., P. R. Evans, G. R. Nute, R. I. Richardson and N. D. Scollan. 2009. A comparison between red clover silage and grass silage feeding on fatty acid composition, meat stability and sensory quality of the M. Longissimus muscle of dairy cull cows. Meat Sci. 81:738-744 https://doi.org/10.1016/j.meatsci.2008.11.016
  19. Lee, M. R. F., L. J. Harris, R. J. Dewhurst, R. J. Merry and N. D. Scollan. 2003. The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Anim. Sci. 76:491-501
  20. Lee, M. R. F., V. J. Theobald, J. K. S. Tweed, A. L. Winters and N. D. Scollan. 2008a. Effect of feeding fresh or conditioned red clover on milk fatty acids and nitrogen utilization in lactating dairy cows. J. Dairy Sci. doi:10.3168/jds.2008-1692 https://doi.org/10.3168/jds.2008-1692
  21. Lee, M. R. F., J. K. S. Tweed, F. R. Minchin and A. L. Winters. 2008b. Red clover polyphenol oxidase: activation, activity and efficacy under grazing. Anim. Feed Sci. Technol. doi:10.1016/j.anifeedsci.2008.06.013 https://doi.org/10.1016/j.anifeedsci.2008.06.013
  22. Maia, M. R. G., L. C. Chaudhary, L. Figueres and R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 91:303-314 https://doi.org/10.1007/s10482-006-9118-2
  23. Moore, B. M. and W. H. Flurkey. 1990. Sodium dodecyl sulphate activation of a plant polyphenoloxidase - effect of sodium dodecyl sulphate on enzymatic and physical characteristics of broad bean polyphenoloxydase. J. Biol. Chem. 265:4982-4988
  24. Shingfield, K. J. and J. M. Griinari. 2007. Role of biohydrogenation intermediates in milk fat depression. Eur. J. Lipid Sci. Technol. 109:799-816 https://doi.org/10.1002/ejlt.200700026
  25. Sinclair, L. A., S. L. Cooper, J. A. Huntington, R. G. Wilkinson, K. G. Hallett, M. Enser and J. D. Wood. 2005. In vitro biohydrogenation of n-3 polyunsaturated fatty acids protected against ruminal microbial metabolism. Anim. Feed Sci. Technol. 124:579-596
  26. Stewart, R. J., B. J. B. Sawyer, C. S. Bucheli and S. P. Robinson. 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust. J. Plant Physiol. 28:181-191
  27. Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629 https://doi.org/10.1079/PNS2004393
  28. Williams, P. P., J. Gutierrez and R. E. Davis. 1963. Lipid metabolism of rumen ciliates and bacteria. II. Uptake of fatty acids and lipid analysis of Isotrichia intestinalis and rumen bacteria with further information on Entodinium simplex. Appl. Microbiol. 11:260-264
  29. Girard, V. and J. C. Hawke. 1978. The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Biochim. Biophys. Acta. 528:17-27 https://doi.org/10.1016/0005-2760(78)90048-6
  30. Grabber, J. H. 2008. Mechanical maceration divergently shifts protein degradability in condensed-tannin vs. o-quinone containing conserved forages. Crop Sci. 48:804-813 https://doi.org/10.2135/cropsci2007.08.0461
  31. Hudson, J. A., B. Morvan and K. N. Joblin. 1998. Hydration of linoleic acid by bacteria isolated from ruminants. FEMS Microbiol. Lett. 169:277-282 https://doi.org/10.1111/j.1574-6968.1998.tb13329.x
  32. Scollan, N. D., M. Enser, S. K. Gulati, I. Richardson and J. D. Wood. 2003. Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. Br. J. Nutr. 90:709-716 https://doi.org/10.1079/BJN2003933
  33. Wachira, A. M., L. A. Sinclair, R. G. Wilkinson, K. Hallett, M. Enser and J. D. Wood. 2000. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agric. Sci. 135:419-428 https://doi.org/10.1017/S0021859699008370
  34. Goldfine, H. 1982. Lipids of prokaryotes: structure and distribution. In: Current topics in membranes and transport (Ed. F. Bronner and A. Kleinzeller). Academic Press. New York and London. pp. 1-43
  35. Nozue, M., D. Arakawa, Y. Iwata, H. Shioiri and M. Kojima. 1999. Activation by proteolysis in vivo of 60-kd latent polyphenol oxidases in sweet potato cells in suspension culture. J. Plant Physiol. 155:297-301 https://doi.org/10.1016/S0176-1617(99)80108-4
  36. Scollan, N., J.-F. Hocquette, K. Nuernberg, D. Dannenberger, I. Richardson and A. Moloney. 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 74:17-33 https://doi.org/10.1016/j.meatsci.2006.05.002
  37. van de Vossenberg, J. and K. N. Joblin. 2003. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 37:424-428 https://doi.org/10.1046/j.1472-765X.2003.01421.x
  38. Wright, D. E. 1959. Hydrogenation of lipids by rumen protozoa. Nature 184:875-876 https://doi.org/10.1038/184875a0
  39. Carriquiry, M., W. J. Weber, L. H. Baumgard and B. A. Crooker. 2008. In vitro biohydrogenation of four dietary fats. Anim. Feed Sci. Technol. 141:339-355 https://doi.org/10.1016/j.anifeedsci.2007.06.028
  40. Henderson, C. 1973. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. (Camb.). 81:107-112 https://doi.org/10.1017/S0021859600058378
  41. Huws, S. A., E. J. Kim, A. H. Kingston-Smith, M. R. F. Lee, S. M. Muetzel, C. J. Newbold, R. J. Wallace and N. D. Scollan. 2009. Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplast. FEMS Microbiol. Ecol. In press https://doi.org/10.1111/j.1574-6941.2009.00717.x
  42. Paillard, D., N. McKain, L. C. Chaudhary, N. D. Walker, F. Pizette, I. Koppova, N. R. McEwan, J. Kopecny, P. E. Vercoe, P. Louis and R. J. Wallace. 2007. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek. 91:417-422 https://doi.org/10.1007/s10482-006-9121-7
  43. Van Dorland, H. A., M. Kreuzer, H. Leuenberger and H. R. Wettstein. 2008. Comparative potential of white and red clover to modify the milk fatty acid profile of cows fed ryegrassbased diets from zero-grazing and silage systems. J. Sci. Food Agric. 88:77-85 https://doi.org/10.1002/jsfa.3024
  44. Gerson, T., A. John and A. S. D. King. 1986. Effects of feeding ryegrass of varying maturity on the metabolism and composition of lipids in the rumen of sheep. J. Agric. Sci. (Camb.). 106:445-448 https://doi.org/10.1017/S0021859600063310
  45. Abde, M., T. Iriki, N. Tobe and H. Shibui. 1981. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl. Environ. Microbiol. 41:758-765
  46. Nam, I. S. and P. C. Garnsworthy. 2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103:551-556 https://doi.org/10.1111/j.1365-2672.2007.03317.x
  47. Dohme, F., V. Fievez, K. Raes and D. I. Demeyer. 2003. Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Anim. Res. 52:309-320 https://doi.org/10.1051/animres:2003028
  48. Li, L. and J. C. Steffens. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 215:239-247 https://doi.org/10.1007/s00425-002-0750-4
  49. Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen and M. J. A. deBie. 1981. The role of Megasphaera elsdenii in the fermentation of D,L-(2-$^{13}C$)-lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42:649-655
  50. Gerson, T., A. John and A. S. D. King. 1985. The effects of dietary starch and fibre on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. J. Agric. Sci. (Camb.). 105:27-30 https://doi.org/10.1017/S0021859600055659
  51. Hazlewood, G. P. and R. M. C. Dawson. 1975. Isolation and properties of a phospholipids-hydrolyzing bacterium from ovine rumen fluid. J. Gen. Microbiol. 89:163-174 https://doi.org/10.1099/00221287-89-1-163
  52. Hobson, P. N. and C. S. Stewart. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic and Professional Press. London. pp. 382-419
  53. Park, Y., J. Storkson, K. Albright, W. Liu and M. Pariza. 1999. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235-241 https://doi.org/10.1007/s11745-999-0358-8
  54. Sinclair, L. A. 2007. Nutritional manipulation of sheep of the fatty acid composition neat: a review. J. Agric. Sci. 145:419-434 https://doi.org/10.1017/S0021859607007186
  55. Thipyapong, P., J. Melkonian, D. W. Wolfe and J. C. Steffens. 2004. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 167:693-703 https://doi.org/10.1016/j.plantsci.2004.04.008
  56. Hudson, J. A., Y. Cai, R. J. Corner, B. Morvan and K. N. Joblin. 2000. Identification and enumeration of oleic acid and linoleic acid hydrating bacteria in the rumen of sheep and cows. J. Appl. Microbiol. 88:286-292 https://doi.org/10.1046/j.1365-2672.2000.00968.x
  57. Lough, A. K. 1970. Aspects of lipid digestion in the ruminant. In: Physiology of Digestion and Metabolism in the Ruminant (Ed. A. T. Phillipson). Oriel Press. Newcastle upon Tyne, UK. pp. 519-528
  58. Doreau, M. and Y. Chilliard. 1997. Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reprod. Nutr. Dev. 37:113-124 https://doi.org/10.1051/rnd:19970112
  59. Scollan, N. D., M. S. Dhanoa, N. J. Choi, W. J. Maeng, M. Enser and J. D. Wood. 2001. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J. Agric. Sci. 136:345-355
  60. Shi, J., K. Arunasalam, D. Yeung, Y. Kakuda, G. Mittal and Y. M. Jiang. 2004. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 7:67-78 https://doi.org/10.1089/109662004322984734
  61. Wallace, R. J., N. McKain, K. J. Shingfield and E. Devillard. 2007. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J. Lipid Res. 48:2247-2254 https://doi.org/10.1194/jlr.M700271-JLR200
  62. Richardson, R. I., P. Costa, G. R. Nute and N. D. Scollan. 2005. The effect of feeding clover silage on polyunsaturated fatty acid and vitamin E content, sensory, colour and lipid oxidative shelf life of beef loin steaks. In: Proceedings of the 51st international congress of meat science and technology, Exploring the wide world of meat, Baltimore, USA. pp. 1654-1661
  63. Atkinson, R. L., E. J. Scholljegerdes, S. L. Lake, V. Nayigihugu, B. W. Hess and D. C. Rule. 2006. Site and extent of digestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed a high-concentrate diet supplemented with high-linoleate safflower oil. J. Anim. Sci. 84:387-396
  64. Givens, D. I. 2005. The role of animal nutrition in improving the nutritive value of animal-derived foods in relation to chronic disease. Proc. Nutr. Soc. 64:395-402 https://doi.org/10.1079/PNS200544
  65. Lafontan, M., M. Berlan, V. Stich, F. Crampes, D. Riviere, I. de Glisezinski, C. Sengenes and J. Galitzky. 2002. Recent data on the regulation of lipolysis by catecholamines and natriuretic peptides. Ann. Endocrinol. 63:86-90
  66. Min, B. R., T. N. Barry, G. T. Attwood and W. C. McNabb. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19 https://doi.org/10.1016/S0377-8401(03)00041-5
  67. Palmquist, D. L., A. L. Lock, K. J. Shingfield and D. E. Bauman. 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Advances in Food and Nutrition Research (Ed. S. L. Taylor) No. 50. Elsevier Academic Press. San Diego, CA. pp. 179-217
  68. Murphy, D. J. 1999. Plant lipids - their metabolism, function and utilization. In: Plant Biochemistry and Molecular Biology (Ed. P. J. Lea and R. C. Leegood). John Wiley & Sons. New York. pp. 119-135
  69. Fievez, V., B. Vlaeminck, T. Jenkins, F. Enjalbert and M. Doreau. 2007. Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Eur. J. Lipid Sci. Technol. 109:740-756 https://doi.org/10.1002/ejlt.200700033
  70. Wright, D. E. 1960. Hydrogenation of chloroplast lipids by rumen bacteria. Nature 185:546-547 https://doi.org/10.1038/185546a0
  71. Ashes, J. R., B. D. Siebert, S. K. Gulati, A. Z. Cuthbertson and T. W. Scott. 1992. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids 27:629-631 https://doi.org/10.1007/BF02536122
  72. Hawke, J. C. 1973. Lipids. In: Chemistry and Biochemistry of Herbage (Ed. U. W. Butler and R. W. Bailey). Academic Press.London. pp. 213-263
  73. Devillard, E., F. M. McIntosh, C. J. Newbold and R. J. Wallace. 2006. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br. J. Nutr. 96:697-704
  74. Latham, M. J., J. E. Storry and M. E. Sharpe. 1972. Effect of lowroughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol. 24:871-877
  75. Lee, M. R. F., L. J. Parfitt, N. D. Scollan and F. R. Minchin. 2007. Lipolysis in red clover with different polyphenol oxidase activities in the presence and absence of rumen fluid. J. Sci. Food Agric. 87:1308-1314 https://doi.org/10.1002/jsfa.2849
  76. Lourenco, M., G. Van Ranst and V. Fievez. 2005. Differences in extent of lipolysis in red or white clover and ryegrass silages in relation to polyphenol oxidase activity. Comm. Agr. Appl. Biol. Sci. 70:169-172
  77. Moreno, D. A., N. Ilic, A. Poulev, D. L. Brasaemle, S. K. Fried and I. Raskin. 2003. Inhibitory effects of grape seed extract on lipases. Nutr. 19:876-879 https://doi.org/10.1016/S0899-9007(03)00167-9
  78. Lee, M. R. F., J. D. O. Colmenero, A. L. Winters, N. D. Scollan and F. R. Minchin. 2006. Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. J. Sci. Food Agric. 86:1503-1511 https://doi.org/10.1002/jsfa.2533
  79. Lee, M. R. F., J. K. S. Tweed, N. D. Scollan and M. L. Sullivan. 2008d. Ruminal micro-organisms do not adapt to increase utilization of poly-phenol oxidase protected red clover protein and glycerol-based lipid. J. Sci. Food Agric. 88:2479-2485 https://doi.org/10.1002/jsfa.3366
  80. Or-Rashid, M. M., N. E. Odongo and B. W. McBride. 2007. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd chain and branched-chain fatty acids. J. Anim. Sci. 85:1228-1234 https://doi.org/10.2527/jas.2006-385
  81. Gerson, T., A. S. D. King, K. E. Kelly and W. J. Kelly. 1988. Influence of particle size and surface area on in vitro rates of gas production, lipolysis of triacylglycerol and hydrogenation of linoleic acid by sheep rumen digesta or Ruminococcus flavefaciens. J. Agric. Sci. (Camb.). 110:31-37 https://doi.org/10.1017/S002185960007965X
  82. Lee, M. R. F., J. K. S. Tweed, N. D. Scollan and M. L. Sullivan. 2008c. Mechanism of polyphenol oxidase action in reducing lipolysis and proteolysis in red clover during batch culture incubation. Proc. Br. Soc. Anim. Sci. p. 31
  83. Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochem. 67:2318-2331 https://doi.org/10.1016/j.phytochem.2006.08.006
  84. Schauff, D. J. and J. H. Clark. 1989. Effects of prilled fatty acids and calcium salts of fatty acids in rumen fermentation, nutrient digestibilities, milk production and milk composition. J. Dairy Sci. 72:917-927 https://doi.org/10.3168/jds.S0022-0302(89)79185-2
  85. Wallace, R. J., L. C. Chaudhary, N. McKain, N. R. McEwan, A. J. Richardson, P. E. Vercoe, N. D. Walker and D. Paillard. 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265:195-201 https://doi.org/10.1111/j.1574-6968.2006.00487.x
  86. Wang, J. H. and C. P. Constabel. 2004. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta. 220:87-96 https://doi.org/10.1007/s00425-004-1327-1
  87. Hawke, J. C. 1971. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation. Biochim. Biophys. Acta. 248:167-170 https://doi.org/10.1016/0005-2760(71)90003-8
  88. Engle, T. E., V. Fellner and J. W. Spears. 2001. Copper status, serum cholesterol, and milk fatty acid profile in Holstein cows fed varying concentrations of copper. J. Dairy Sci. 84:2308-2313 https://doi.org/10.3168/jds.S0022-0302(01)74678-4
  89. Gerson, T., A. John and B. R. Sinclair. 1983. The effect of dietary N on in vitro lipolysis and fatty acid hydrogenation in rumen digesta from sheep fed diets high in starch. J. Agric. Sci. (Camb.). 101:97-101 https://doi.org/10.1017/S0021859600036406
  90. Hawke, J. C. and W. R. Silcock. 1970. The in vitro rates of lipolysis and biohydrogenation in rumen contents. Biochim. Biophys. Acta. 218:201-212 https://doi.org/10.1016/0005-2760(70)90138-4
  91. Lee, M. R. F., A. L. Winters, N. D. Scollan, R. J. Dewhurst, M. K. Theodorou and F. R. Minchin. 2004. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J. Sci. Food Agric. 84:1639-1645 https://doi.org/10.1002/jsfa.1854
  92. Sullivan, M. L., R. D. Hatfield, S. L. Thoma and D. A. Samac. 2004. Cloning and characterization of red clover polyphenol oxidase cDNAs and expression of active protein in Escherichia coli and transgenic alfalfa. Plant Physiol. 136:3234-3244 https://doi.org/10.1104/pp.104.047449
  93. Williams, A. G. and C. S. Coleman. 1992. The rumen protozoa. Springer-Verlag, New York
  94. Winters, A. L. and F. R. Minchin. 2001. Red clover and the future for pasture legumes as an alternative protein source for ruminants. In: IGER Innovation No. 5. pp. 30-33
  95. Bauman, D. E. and A. L. Lock. 2006. Concepts in lipid digestion and metabolism in dairy cows. In: Proceedings of the 2006 Tri-State Dairy Nutrition Conference, Ohio USA. pp. 1-14
  96. Glasser, F., R. Schmidely, D. Sauvant and M. Doreau. 2008. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids. Anim. 2:691-704
  97. Williams, C. M. 2000. Dietary fatty acids and human health. Ann. Zootech. (Paris). 49:165-180 https://doi.org/10.1051/animres:2000116
  98. Winters, A. L., F. R. Minchin, T. P. T. Michaelson-Yeates, M. R. F. Lee and P. Morris. 2008. Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. J. Agric. Food Chem. 56:2817-2824 https://doi.org/10.1021/jf0726177
  99. Al-Mabruk, R. M., N. F. G. Beck and R. J. Dewhurst. 2004. Effects of silage species and supplemental vitamin E on the oxidative stability of milk. J. Dairy Sci. 87:406-412 https://doi.org/10.3168/jds.S0022-0302(04)73180-X
  100. Kemp, P. and D. J. Lander. 1984. Hydrogenation in vitro of alphalinolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J. Gen. Microbiol. 130:527-533

Cited by

  1. The effects of feeding fresh forage and silage on some nutritional attributes of beef: an overview vol.28, pp.1, 2011, https://doi.org/10.2478/v10146-011-0001-z
  2. vol.67, pp.1, 2013, https://doi.org/10.1080/1745039X.2012.755325
  3. Effect of forage conservation method on ruminal lipid metabolism and microbial ecology in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio vol.96, pp.4, 2013, https://doi.org/10.3168/jds.2012-6043
  4. Recent developments in lipid metabolism in ruminants – the role of fat in maintaining animal health and performance vol.54, pp.10, 2014, https://doi.org/10.1071/AN14555
  5. Lipid fraction of creams collected in the Parmigiano-Reggiano cheese production area in response to extruded linseed supplementation of dairy cows’ diets: GC-FID and FT-MIR evaluation vol.67, pp.4, 2014, https://doi.org/10.1111/1471-0307.12153
  6. Quality traits and lipid composition of meat from crossbreed Santa Ines ewes fed diets including crushed crambe vol.45, pp.6, 2016, https://doi.org/10.1590/S1806-92902016000600006
  7. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA vol.64, pp.22, 2016, https://doi.org/10.1021/acs.jafc.6b00846
  8. Temporal Metagenomic and Metabolomic Characterization of Fresh Perennial Ryegrass Degradation by Rumen Bacteria vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.01854
  9. Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01124
  10. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition1,2 vol.93, pp.4, 2015, https://doi.org/10.2527/jas.2014-8754
  11. Forage type and fish oil cause shifts in rumen bacterial diversity pp.15746941, 2010, https://doi.org/10.1111/j.1574-6941.2010.00892.x