Arabidopsis AMY1 expressions and early flowering mutant phenotype

  • Jie, Wang (Institute of Life Science and Technology, Hunan University) ;
  • Dashi, Yu (Institute of Life Science and Technology, Hunan University) ;
  • XinHong, Guo (Institute of Life Science and Technology, Hunan University) ;
  • Xuanming, Liu (Institute of Life Science and Technology, Hunan University)
  • Published : 2009.02.28


The homozygous T-DNA mutant of the AMY1 gene in Arabidopsis was identified and importantly, shown to cause an early flowering phenotype. We found that the disruption of AMY1 enhanced expression of CO and FT. The expression analyses of genes related to starch metabolism revealed that expression of the AGPase small subunit APS1 in the wild type was higher than in the amy1 mutant. However, there were no significant differences in expression levels of the AGPase large subunit genes ApL1, AMY2, or AMY3 between wild type and the amy1 mutant. Expression profiling showed that AMY1 was highly expressed in leaves, stems, and flowers, and expressed less in leafstalks and roots. Furthermore, the level of AMY1 mRNA was highly elevated with age and in senescing leaves. RT-PCR analyses showed that the expression of AMY1 was induced by heat shock, GA, and ABA, while salt stress had no apparent effect on its expression.


AMY1 gene;Arabidopsis;Expression patterns;Phenotype;Stress


  1. Beers. E. P., Duke, S. H. (1988) Localization of a-amylase in the apoplast of pea (Pisum sativum L.) stems. Plant Physiol. 87, 799-802
  2. Saeed, M. and Duke, S. H. (1988) Chloroplastic regulation of apoplastic a-amylase activity in pea seedlings. Plant Physiol. 93, 131-140
  3. Martin, C. and Smith, A. M. (1995). Starch biosynthesis. Plant Cell 7, 971-985
  4. Sokolov, L. N., Dejardin, A., Kleczkowski, L. A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336, 681-687
  5. Wang, S. M., Chu, B., Lue, W. L., Yu, T. S., Eimert, K. and Chen, J. (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thalian. Plant J. 11, 1121-1126
  6. Yu, T. S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W. L., Hegemann, B., Tung, S. Y., Umemoto, T., Chapple, A., Tsai, D. L., Wang, S. M., Smith, A. M., Chen, J. C. and Smith, S. M. (2005) a-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J. Biol. Chem. 280, 9773-9779
  7. Quirino, B. F., Normanly, J. and Amasino, R. M. (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol. 40, 267-278
  8. Pulla, R. K., Kim, Y. J., Kim, M. K., Senthil, K. S., In, J. G. and Yang, D. C. (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analyses of its response to abiotic stresses. BMB Rep. 41, 338-343
  9. Mitsui, T., Ueki. Y. and Igaue, I. (1993) Biosynthesis and secretion of $\alpha$-amylase by rice suspension- cultured cells: Purification and characterization of $\alpha$-amylase isozyme H. Plant Physiol. Biochem. 31, 863-874
  10. Preiss, J. (1988). Biosynthesis of starch and its regulation. In The Biochemistry of Plants, Vol. 14, J. Preiss, ed (San Diego, CA: Academic Press), pp. 181-254
  11. Gao, S., Lin, J., Liu, X., Deng, Z., Li, Y., Sun, X. and Tang, K. (2006) Molecular Cloning, Characterization and Functional Analyses of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba. J. Biochem. Mol. Biol. 39, 502-510
  12. Commuri, P. D. and Duke, S. H. (1997) Apoplastic a-amylase in pea is enhanced by heat stress. Plant Cell Physiol. 38, 625-630
  13. Doyle, E. A., Lane, A. M., Sides, J. M., Mudgett, M, B. and Monroe, J. D. (2007) An a-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ. 30, 388-398
  14. Lloyd, J. R, Kossmann, J. and Ritte, G. (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci. 10, 130-137
  15. Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y. C., Dolan, S. and Lin, C. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 100, 2140-2145
  16. Nakai, K. and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897-911
  17. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T. and Pink, D. (2003) The molecular analyses of leaf senescence-a genomics approach. Plant Biotechnol. J. 1, 3-22
  18. H. G. (1998) Differential expression of senescence- associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol. Biol. 37, 445-454
  19. Saeed, M. and Duke, S. H. (1990) Amylases in pea tissue with reduced chloroplast density and/or function. Plant Physiol. 94, 1813-1819
  20. Stanley, D., Fitzgerald, A. M., Farnden, K. J. F. and MacRae, E. A. (2002) Characterisation of putative a-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia. Bratislava. 11, 137-148
  21. Lin, T. P., Caspar, T., Somerville, C. R. and Preiss, J. (1998) A starch deficient mutant of Arabidopsis thaliana with low ADP glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol. 88, 1175-1181
  22. Weaver, L. M., Gan, S., Quirino, B. and Amasino, R. M. (1998) A comparison of the expression patterns of several senescence associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455-469
  23. Delatte. T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S. M. and Zeeman, S. C. (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. J. Biol. Chem. 281, 12050-12059
  24. Lim. P. O., Woo, H. R. and Nam, H. G. (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278
  25. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016
  26. Smith, A. M., Denyer, K., and Martin, C. (1997) The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 67-87

Cited by

  1. Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence vol.218, pp.4, 2018,