DOI QR코드

DOI QR Code

Antifungal activity of Saccharomyces cerevisiae peroxisomal 3-ketoacyl-CoA thiolase

  • Lee, Jung-Ro (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Sun-Young (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Chae, Ho-Byoung (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Jung, Ji-Hyun (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Lee, Sang-Yeol (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Published : 2009.05.31

Abstract

Peroxisomes play an important role in cellular defense systems and generate secondary messengers for cellular communication. Saccharomyces cerevisiae containing oleate-induced peroxisomes were subjected to buffer-soluble extraction and two chromatographic procedures, and a protein with antifungal activity was isolated. The results of MALDI-TOF analysis identified the isolated protein as peroxisomal 3-ketoacyl-CoA thiolase (ScFox3). Purified yeast ScFox3 exhibited thiolase activity that catalyzed the thiolytic cleavage of 3-ketoacyl-CoA to acetyl-CoA and acyl-CoA. ScFox3 protein inhibited various pathogenic fungal strains, with the exception of Aspergillus flavus. Using ScFox3-GFP and PTS2 signal-truncated ScFox3M-GFP, we showed that only ScFox3-GFP, with an intact PTS2 peroxisome signal sequence, was able to translocate into peroxisomes. Yeast ScFox3 is a natural antifungal agent found in peroxisomes.

Keywords

Antifungal activity;Hemolytic activity;Saccharomyces cerevisiae;ScFox3;Thiolase activity

References

  1. Lee, J. R., Jang, H. H., Park, J. H., Jung, J. H., Lee, S. S., Park, S. K., Chi, Y. H., Moon, J. C., Lee, Y. M., Kim, S. Y., Kim, J. Y., Yun, D.J., Cho, M. J., Lee, K. O. and Lee, S. Y. (2006) Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. Plant J. 47, 457-466 https://doi.org/10.1111/j.1365-313X.2006.02797.x
  2. Fransen, M., Brees, C., Baumgart, E., Vanhooren, J. C., Baes, M., Mannaerts, G. P. and van Veldhoven, P. P. (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731-7736 https://doi.org/10.1074/jbc.270.13.7731
  3. Rehling, P., Marzioch, M., Niesen, F., Wittke, E., Veenhuis, M. and Kunau, W. H. (1996) The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901-2913
  4. Lee, J. R., Park, S. C., Kim, M. H., Jung, J. H., Shin, M. R., Lee, D. H., Cheon, M. G., Park, Y., Hahm, K. S. and Lee, S. Y. (2007) Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Biochem. Biophys. Res. Commun. 359, 941-946 https://doi.org/10.1016/j.bbrc.2007.05.210
  5. Hayashi, M., Toriyama, K., Kondo, M. and Nishimura, M. (1998) 2,4 Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta- oxidation. Plant Cell 10, 183-195 https://doi.org/10.1105/tpc.10.2.183
  6. Cruz Castillo, M., Martinez, C., Buchala, A., Metraux, J. P. and Leon, J. (2004) Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. Plant Physiol. 135, 85-94 https://doi.org/10.1104/pp.104.039925
  7. Lee, J. R., Jung, J. H., Kang, J. S., Kim, J. C., Jung, I. J., Seok, M. S., Kim, J. H., Kim, W. Y., Kim, M. G., Kim, J. Y., Lim, C. O., Lee, K. O. and Lee, S. Y. (2007) Molecular and functional characterization of monocot-specific Pex5p splicing variants, using OsPex5pL and OsPex5pS from rice (Oryza sativa). Mol. Cells 23, 161-169
  8. Osumi, T., Tsukamoto, T. and Hata, S. (1992) Signal peptide for peroxisomal targeting: replacement of an essential histidine residue by certain amino acids converts the amino-terminal presequence of peroxisomal 3-ketoacyl-CoA thiolase to a mitochondrial signal peptide. Biochem. Biophys. Res. Commun. 186, 811-818 https://doi.org/10.1016/0006-291X(92)90818-6
  9. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., Somerville, S. C. and Maclean, D. J. (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132, 999-1010 https://doi.org/10.1104/pp.103.021683
  10. Germain, V., Rylott, E. L., Larson, T. R., Sherson, S. M., Bechtold, N., Carde, J. P., Bryce, J. H., Graham, I. A. and Smith, S. M. (2001) Requirement for 3-ketoacyl-CoA thiolase- 2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J. 28, 1-12 https://doi.org/10.1046/j.1365-313X.2001.01095.x
  11. Cho, K.H., Kim, S.T. and Kim, Y.K. (2007) Purification of a pore-forming peptide toxin, Tolaasin, produced by Pseudomonas tolaasii 6264. J. Biochem. Mol. Biol. 40, 113-118 https://doi.org/10.5483/BMBRep.2007.40.1.113
  12. Castillo, M. C. and Leon, J. (2008) Expression of the beta- oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J. Exp. Bot. 59, 2171-2179 https://doi.org/10.1093/jxb/ern079
  13. Kurihara, T., Ueda, M. and Tanaka, A. (1988) Occurrence and possible roles of acetoacetyl-CoA thiolase and 3-ketoacyl- CoA thiolase in peroxisomes of an n-alkane-grown yeast, Candida tropicalis. FEBS Lett. 229, 215-218 https://doi.org/10.1016/0014-5793(88)80830-5
  14. Park, S.C., Lee, J. R., Shin, S.O., Park, Y., Lee, S. Y. and Hahm, K.S. (2007) Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 362, 562-567 https://doi.org/10.1016/j.bbrc.2007.07.188
  15. Corpas, F. J., Barroso, J. B. and del Rio, L. A. (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6, 145-150 https://doi.org/10.1016/S1360-1385(01)01898-2
  16. Lazarow, P. B. and Fujiki, Y. (1985) Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489-530 https://doi.org/10.1146/annurev.cb.01.110185.002421
  17. Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijikata, M., Miyazawa, S. and Hashimoto, T. (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947-954 https://doi.org/10.1016/0006-291X(91)92028-I
  18. Bojorquez, G. and Gomez-Lim, M. A. (1995) Peroxisomal thiolase mRNA is induced during mango fruit ripening. Plant Mol. Biol. 28, 811-820 https://doi.org/10.1007/BF00042067
  19. Footitt, S., Cornah, J. E., Pracharoenwattana, I., Bryce, J. H. and Smith, S. M. (2007) The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but reduced reproductive success. J. Exp. Bot. 58, 2959-2968 https://doi.org/10.1093/jxb/erm146
  20. Pinfield-Wells, H., Rylott, E. L., Gilday, A. D., Graham, S., Job, K., Larson, T. R. and Graham, I. A. (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J. 43, 861-872 https://doi.org/10.1111/j.1365-313X.2005.02498.x
  21. Johnson, T. L. and Olsen, L. J. (2001) Building new models for peroxisome biogenesis. Plant Physiol. 127, 731-739 https://doi.org/10.1104/pp.010262

Cited by

  1. Intracellular targeting of ascomycetous catalase-peroxidases (KatG1s) vol.195, pp.6, 2013, https://doi.org/10.1007/s00203-013-0887-5
  2. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma vol.15, pp.10, 2016, https://doi.org/10.1021/acs.jproteome.6b00530