DOI QR코드

DOI QR Code

Proteomic analysis of porcine pancreas development

  • Choi, Jong-Soon (Proteome Research Team, Korea Basic Science Institute) ;
  • Cho, Young-Keun (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Sung-Ho (Proteome Research Team, Korea Basic Science Institute) ;
  • Kwon, Sang-Oh (Proteome Research Team, Korea Basic Science Institute) ;
  • Koo, Deog-Bon (Department of Biotechnology, College of Engineering, Daegu University) ;
  • Yu, Kweon (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2009.10.31

Abstract

Porcine pancreas development is not well studied at the molecular level despite being a therapeutic resource for diabetic patients. In this study, we investigated expression of lineage markers and performed proteomic analysis. Expression of the early lineage markers Pdx1 and Ptf1a was developmentally conserved between mice and pigs, whereas expression of the islet differentiation marker Pax4 was delayed in porcine compared with murine pancreas development. Proteomic analysis found that expression levels of chymotrypsinogen were down-regulated during porcine pancreas development while those of digestive enzymes like lipases, elastase and serine protease were up-regulated. In addition, specific isoforms of protein folding assistants such as protein disulfide isomerase and prefoldin were expressed at specific stages during the maturation of digestive enzymes. Taken together, these results show that development of the porcine pancreas is regulated by a concerted interplay of pancreas lineage marker proteins and other specified proteins, resulting in a functional endocrine and exocrine organ.

References

  1. Spence, J. R. and Wells, J. M. (2007) Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev. Dyn. 236, 3218-3227 https://doi.org/10.1002/dvdy.21366
  2. van Nest, G. A., MacDonald, R. J., Raman, R. K. and Rutter, W. J. (1980) Proteins synthesized and secreted during rat pancreatic development. J. Cell. Biol. 86, 784-794 https://doi.org/10.1083/jcb.86.3.784
  3. Rose, M. I., Crisera, C. A., Colen, K. L., Connelly, P. R., Longaker, M. T. and Dittes, G. K. (1999) Epithelio-mesenchymal interactions in the developing mouse pancreas: morphogenesis of the adult architecture. J. Pediatr. Surg. 34, 774-780 https://doi.org/10.1016/S0022-3468(99)90372-X
  4. McKinnon, C. M. and Docherty, K. (2001) Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 44, 1203-1214 https://doi.org/10.1007/s001250100628
  5. Guz, Y., Montminy, M. R., Stein, R., Leonard, J., Gamer, L. W., Wright, C. V. and Teitelman, G. (1995) Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11-18
  6. Lin, J. W., Biankin, A. V., Horb, M. E., Ghosh, B., Prasad, N. B., Yee, N. S., Pack, M. A. and Leach, S. D. (2004) Differential requirement for Ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev. Biol. 274, 491-503 https://doi.org/10.1016/j.ydbio.2004.07.001
  7. Naya, F. J., Stellrecht, C. M. and Tsai, M. J. (1995) Tissuespecific regulation of the insulin gene by a novel basic helix- loop-helix transcription factor. Genes Dev. 9, 1009- 1019 https://doi.org/10.1101/gad.9.8.1009
  8. Naya, F. J., Huang, H. P., Qiu, Y., Mutoh, H., DeMayo, F. J., Leiter, A. B. and Tsai, M. J. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323-2334 https://doi.org/10.1101/gad.11.18.2323
  9. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. and Gruss, P. (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399-402 https://doi.org/10.1038/386399a0
  10. Rogers, S. A., Chen, F., Talcott, M., Liapis, H. and Hammerman, M. R. (2006) Glucose tolerance normalization following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic ZDF rats. Transpl. Immunol. 16, 176-184 https://doi.org/10.1016/j.trim.2006.08.007
  11. Groth, C. G., Korsgren, O., Tibell, A., Tollemar, J., M-ller, E., Bolinder, J., Ostman, J., Reinholt, F. P., Hellerstr-m, C. and Andersson, A. (1994) Transplantation of porcine fetal pancreas to diabetic patients. Lancet 344, 1402-1404 https://doi.org/10.1016/S0140-6736(94)90570-3
  12. Eventov-Friedman, S., Tchorsh, D., Katchman, H., Shezen, E., Martinowitz, U., Blazar, B. R., and Cohen, S. (2006) Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med. 3, e215 https://doi.org/10.1371/journal.pmed.0030215
  13. Bernardo, A. S., Barrow, J., Hay, C. W., McCreath, K.,Kind, A. J., Schnike, A. E., Colman, A., Hart, A. W. and Docherty, K. (2006) Presence of endocrine and exocrine markers in EGFP-positive cells from the developing pancreas of a nestin/EGFP mouse. Mol. Cell. Endocrinol. 253, 14-21 https://doi.org/10.1016/j.mce.2006.03.003
  14. Muller, D. R., Schindler, P., Coulot, M., Voshol, H. and van Oostrum, J. (1999) Mass spectrometric characterization of stathmin isoforms separated by 2D PAGE. J. Mass Spectrom. 34, 336-345 https://doi.org/10.1002/(SICI)1096-9888(199904)34:4<336::AID-JMS765>3.0.CO;2-U
  15. Gestin, M., Le Huerou-Luron, I., Peiniau, J., Le Drean, G., Rome, V., Aumaitre, A. and Guilloteau, P. (1997) Diet modified elastase I and II activities and mRNA levels during postnatal development and weaning in piglets. J. Nutr. 127, 2205-2211
  16. Jensen, M. S., Jensen, S. K. and Jakobsen, K. (1997) Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 75, 437-445 https://doi.org/10.2527/1997.752437x
  17. Koo, S. H., Choi, Y. L., Choi, S. K., Shin, Y. H., Kim, B. G. and Lee, B. L. (2000) Purification and characterization of serine protease inhibitors from Dolichos lablab seeds; prevention effects on pseudomonal elastase-induced septic hypertension. J. Biochem. Mol. Biol. 33, 112-119
  18. Nagaoka, R., Kusano, K., Abe, H. and Obinata, T. (1995) Effects of cofilin on actin filamentous structures in cultured muscle cells: intracellular regulation of cofilin action. J. Cell Sci. 108, 581-593
  19. Moriyama, K. and Yahara, I. (2002) The actin-severing activity of cofilin is exerted by the interplay of three distinct sites on cofilin and essential for cell viability. Biochem. J. 365, 147-155 https://doi.org/10.1042/BJ20020231
  20. Zhang, W., Navenot, J. M., Frilot, N. M., Fujii, N. and Peiper, S. C. (2007) Association of nucelophosmin negatively regulates CXCR4-mediated G protein activation and chemotaxis. Mol. Pharmacol. 72, 1310-1321 https://doi.org/10.1124/mol.107.037119
  21. Chakrabarty, S., Nagata, M., Yasuda, H., Wen, L., Nakayama, M., Chowdhury, S. A., Yamada, K., Jin, Z., Kotani, R., Moriyama, H., Shimozato, O., Yagita, H. and Yokono, K. (2003) Critical roles of CD30/CD30L interactions in murine autoimmune diabetes. Clin. Exp. Immunol. 133, 318-325 https://doi.org/10.1046/j.1365-2249.2003.02223.x
  22. Wedemeyer, W. J., Welker, E., Narayan, M. and Scheraga, H. A. (2000) Disulfide bonds and protein folding. Biochemistry 39, 4207-4216 https://doi.org/10.1021/bi992922o
  23. Kim, H. R., Kang, J. K., Yoon, J. T., Seong, H. H., Jung, J. K., Lee, H. M., Park, C. S. and Jin, D. I. (2005) Protein profiles of bovine placenta derived from somatic cell nuclear transfer. Proteomics 5, 4264-4273 https://doi.org/10.1002/pmic.200401297
  24. Li, M., Xiao, Z. Q., Che, Z. C., Li, J. L. Li, C., Zhang, P. F. and Li, M. Y. (2007) Proteomic analysis of the aging-related proteins in human normal colon epithelial tissue. J. Biochem. Mol. Biol. 40, 72-81 https://doi.org/10.5483/BMBRep.2007.40.1.072
  25. Polpitiya, A. D., Qian, W. J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp II, D. G., Anderson, G. A. and Smith, R. D. (2008) DAnTE: a statistical tool for quantitative analysis of-omics data. Bioinformatics 24, 1556-1558 https://doi.org/10.1093/bioinformatics/btn217
  26. Murtaugh L. C. (2007) Pancreas and beta-cell development: from the actual to the possible. Development 134, 427-438 https://doi.org/10.1242/dev.02770

Cited by

  1. Proteomic analysis of pancreas in miniature pigs according to developmental stages using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry vol.30, pp.1, 2014, https://doi.org/10.5625/lar.2014.30.1.1
  2. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets vol.30, 2015, https://doi.org/10.1016/j.jtemb.2015.01.008
  3. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using ‘omic’ technologies vol.4, pp.5, 2010, https://doi.org/10.1517/17530059.2010.508492
  4. Proteome analysis of Thermococcus onnurineus NA1 reveals the expression of hydrogen gene cluster under carboxydotrophic growth vol.74, pp.10, 2011, https://doi.org/10.1016/j.jprot.2011.05.010