DOI QR코드

DOI QR Code

Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells

  • Lee, Soo-Hyoung (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kim, Young-Jin (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwon, Sang-Hoon (Department of Microbiology, College of Medicine, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Choi, Soo-Young (Department of Biomedical Science, College of Medicine, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science, College of Medicine, Hallym University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Published : 2009.05.31

Abstract

Due to their multiple biological activities, flavonoids have gained attention as potentially useful therapeutics for a variety of diseases including cancer, cardiovascular diseases, and autoimmune diseases. In this study, we demonstrated that several flavonoids, including kaempferol, quercetin, fisetin, and chrysin block TNF-$\alpha$ induced IL-8 promoter activation and gene expression in HEK 293 cells. In addition, phosphorylation and degradation of $I{\kappa}B{\alpha}$ and translocation of NF-${\kappa}B$ p65 were inhibited by these flavonoids in TNF-$\alpha$-stimulated HEK 293 cells. Furthermore, generation of reactive oxygen species (ROS) in response to TNF-$\alpha$ was reduced by the flavonoids. Moreover, although pretreatment with fisetin, quercetin, or chrysin decreased cell viability, kaempferol did not. Taken together, these findings suggest that kaempferol would be useful for the treatment of TNF-$\alpha$-induced inflammatory diseases.

Keywords

Flavonoids;IL-8;Kaempferol;NF-${\kappa}B$;ROS

References

  1. Lotito, S. B. and Frei, B. (2006) Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. J. Biol. Chem. 281, 37102-37110 https://doi.org/10.1074/jbc.M606804200
  2. Rahman, M. M. and McFadden, G. (2006) Modulation of Tumor Necrosis Factor by Microbial Pathogens. PLoS Pathog. 2, 66-77 https://doi.org/10.1371/journal.ppat.0020004
  3. Zhang, G. (2004) Tumor necrosis factor family ligand-receptor binding. Curr. Opin. Struct. Biol. 2, 154-160
  4. Samhan-Arias, A. K., Martín-Romero, F. J. and Gutiérrez- Merino, C. (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic. Biol. Med. 37, 48-61 https://doi.org/10.1016/j.freeradbiomed.2004.04.002
  5. Park, H. H., Lee, S., Son, H. Y , Park, S. B., Kim, M. S., Choi, E. J., Singh, T. S., Ha, J. H., Lee, M. G., Kim, J. E., Hyun, M. C., Kwon, T. K., Kim, Y. H. and Kim, S. H. (2008) Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 31, 1303-1311 https://doi.org/10.1007/s12272-001-2110-5
  6. Chen, Z. J. (2005) Ubiquitin signalling in the NF-$\kappa$B pathway. Nat. Cell Biol. 7, 758-765 https://doi.org/10.1038/ncb0805-758
  7. Lee, E. R., Kang, Y. J., Kim, J. H., Lee, H. T. and Cho, S. G. (2005) Modulation of apoptosis in HaCaT keratinocytes via differential regulation of ERK signaling pathway by flavonoids. J. Biol. Chem. 280, 31498-31507 https://doi.org/10.1074/jbc.M505537200
  8. Muppidi, J. R., Tschopp, J. and Siegel, R. M. (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 4, 461-465
  9. Palladino, M. A., Bahjat, F. R., Theodorakis, E. A. and Moldawer, L. L. (2003) Anti-TNF-α therapies: the next generation. Nat. Rev. Drug Discov. 9, 736-746 https://doi.org/10.1038/nm876
  10. Bradley, J. R. (2008) TNF-mediated inflammatory disease. J. Pathol. 214, 149-160 https://doi.org/10.1002/path.2287
  11. Lee, K. W., Lee, Y., Kwon, H. J. and Kim, D. S. (2005) Sp1-associated activation of macrophage inflammatory protein-2 promoter by CpG-oligodeoxynucleotide and lipopolysaccharide. Cell Mol. Life Sci. 62, 188-198 https://doi.org/10.1007/s00018-004-4399-y
  12. Lin, H. Y., Juan, S. H., Shen, S. C., Hsu, F. L. and Chen, Y. C. (2003) Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem. Pharmacol. 66, 1821-1832 https://doi.org/10.1016/S0006-2952(03)00422-2
  13. Kim, H. J., Hwang, J. S., Woo, C. H., Kim, E. Y., Kim, T. H., Cho, K. J., Seo, J. M., Lee, S. S. and Kim, J.H. (2008) TNF-α-induced up-regulation of intercellular adhesion molecule-1 is regulated by a Rac-ROS-dependent cascade in human airway epithelial cells. Exp. Mol. Med. 40, 167-175 https://doi.org/10.3858/emm.2008.40.2.167
  14. Chen, C. C., Chow, M. P., Huang, W. C., Lin, Y. C. and Chang, Y. J. (2004) Flavonoids inhibit tumor necrosis factor- alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure- activity relationships. Mol. Pharmacol. 66, 683-693
  15. Hoek, J. B. and Pastorino, J. G. (2004) Cellular signaling mechanisms in alcohol-induced liver damage. Semin. Liver Dis. 24, 257-272 https://doi.org/10.1055/s-2004-832939
  16. Park, J. S., Rho, H. S., Kim, D. H. and Chang, I. S. (2006) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem. 54, 2951-2956 https://doi.org/10.1021/jf052900a
  17. Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., Cetrulo, CL. and Theoharides, T. C. (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 145, 934-944 https://doi.org/10.1038/sj.bjp.0706246
  18. Kim, D. S., Han, J. H. and Kwon, H. J. (2003) NF-κB and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633-643 https://doi.org/10.1016/j.molimm.2003.07.001
  19. Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H. and Boyd, M. R. (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589-601
  20. Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793 https://doi.org/10.5483/BMBRep.2006.39.6.788
  21. Comalada, M., Ballester, I., Bailon, E., Sierra, S., Xaus, J., Galvez, J., de Medina, F. S. and Zarzuelo, A. (2006) Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem. Pharmacol. 72, 1010-1021 https://doi.org/10.1016/j.bcp.2006.07.016
  22. Pang, J. L., Ricupero, D. A., Huang, S., Fatma, N., Singh, D. P., Romero, J. R. and Chattopadhyay, N. (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol. 71, 818-826 https://doi.org/10.1016/j.bcp.2005.12.023
  23. Karin, M. and Greten, F. R. (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 10, 749-759
  24. Hu, M. (2007) Commentary: bioavailability of flavonoids and polyphenols: call to arms. Mol. Pharm. 4, 803-806 https://doi.org/10.1021/mp7001363
  25. Park, L. J., Ju, S. M., Song, H. Y., Lee, J. A., Yang, M. Y., Kang, Y. H., Kwon, H. J., Kim, T. Y., Choi, S. Y. and Park, J. (2006) The enhanced monocyte adhesiveness after UVB exposure requires ROS and NF-kB signaling in human keratinocytes. J. Biochem. Mol. Biol. 39, 618-625 https://doi.org/10.5483/BMBRep.2006.39.5.618
  26. Fang, S. H., Rao, Y. K. and Tzeng, Y. M. (2005) Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-gamma- activated murine macrophages. Bioorg. Med. Chem. 13, 2381-2388 https://doi.org/10.1016/j.bmc.2005.01.050

Cited by

  1. Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofribroblast CCD-18Co cells vol.82, pp.4, 2011, https://doi.org/10.1016/j.fitote.2011.01.013
  2. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats vol.4, pp.1, 2015, https://doi.org/10.1016/j.bjbas.2015.02.012
  3. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy vol.444, pp.1-2, 2013, https://doi.org/10.1016/j.ijpharm.2013.01.050
  4. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats vol.279, pp.1, 2014, https://doi.org/10.1016/j.taap.2014.05.007
  5. 6-Acetonyl-5,6-dihydrosanguinarine (ADS) from Chelidonium majus L. triggers proinflammatory cytokine production via ROS–JNK/ERK–NFκB signaling pathway vol.58, 2013, https://doi.org/10.1016/j.fct.2013.04.051
  6. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB vol.254, pp.1, 2011, https://doi.org/10.1016/j.taap.2011.04.008
  7. C/EBPα mediates the transcriptional suppression of human calreticulin gene expression by TNFα vol.44, pp.1, 2012, https://doi.org/10.1016/j.biocel.2011.10.004
  8. Opposite Effects of Quercetin, Luteolin, and Epigallocatechin Gallate on Insulin Sensitivity Under Normal and Inflammatory Conditions in Mice vol.36, pp.1, 2013, https://doi.org/10.1007/s10753-012-9514-x
  9. The Chemopreventive Effect of the Dietary Compound Kaempferol on the MCF-7 Human Breast Cancer Cell Line Is Dependent on Inhibition of Glucose Cellular Uptake vol.67, pp.3, 2015, https://doi.org/10.1080/01635581.2015.1002625
  10. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells vol.114, 2016, https://doi.org/10.1016/j.ejmech.2016.02.045
  11. Quercetin for Chronic Prostatitis/Chronic Pelvic Pain Syndrome vol.38, pp.3, 2011, https://doi.org/10.1016/j.ucl.2011.05.003
  12. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling vol.128, pp.48, 2016, https://doi.org/10.1002/ange.201607990
  13. Kaempferol and inflammation: From chemistry to medicine vol.99, 2015, https://doi.org/10.1016/j.phrs.2015.05.002
  14. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation – modulation of microRNA 126 vol.6, pp.1, 2015, https://doi.org/10.1039/C4FO00459K
  15. Inhibition of c-Jun N-terminal kinase and nuclear factor κ B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells vol.34, pp.4, 2012, https://doi.org/10.3109/08923973.2011.648270
  16. Emerging Utilization of Chrysin Using Nanoscale Modification vol.2016, 2016, https://doi.org/10.1155/2016/2894089
  17. Expression of Pro-inflammatory Interleukin-8 is Reduced by Ayurvedic Decoctions vol.28, pp.8, 2014, https://doi.org/10.1002/ptr.5109
  18. Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells vol.216, pp.10, 2011, https://doi.org/10.1016/j.imbio.2011.05.002
  19. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention vol.138, pp.4, 2013, https://doi.org/10.1016/j.foodchem.2012.11.139
  20. Interconverting flavanone glucosides and other phenolic compounds in Lippia salviaefolia Cham. ethanol extracts vol.72, pp.16, 2011, https://doi.org/10.1016/j.phytochem.2011.07.004
  21. Cyclic Glucans Enhance Solubility of Bioavailable Flavonoids vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111556
  22. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling vol.55, pp.48, 2016, https://doi.org/10.1002/anie.201607990
  23. -induced inflammation pp.1347-6947, 2018, https://doi.org/10.1080/09168451.2018.1528140
  24. Identification of Drug Candidates to Suppress Cigarette Smoke–induced Inflammation via Connectivity Map Analyses vol.58, pp.6, 2018, https://doi.org/10.1165/rcmb.2017-0202OC
  25. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients vol.9, pp.4, 2018, https://doi.org/10.1039/C7FO01898C
  26. Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506? vol.7, pp.1, 2009, https://doi.org/10.1186/1478-811X-7-25