Determination of trace boron in steels by prompt gamma-ray activation analysis

즉발감마선방사화분석법에 의한 철강시료 중의 붕소 측정

  • Kim, I.J. (Korea Research Institute of Standards and Science) ;
  • Cho, K.H. (Korea Research Institute of Standards and Science) ;
  • Paul, R.L. (National Institute of Standards and Technology)
  • 김인중 (한국표준과학연구원 삶의질측정표준본부) ;
  • 조경행 (한국표준과학연구원 삶의질측정표준본부) ;
  • Received : 2009.06.25
  • Accepted : 2009.08.03
  • Published : 2009.08.25


A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.


Prompt gamma-ray activation analysis;boron;low alloy steel;certified reference material;uncertainty


  1. N. Uehara, K. Yamaguchi, and T. Shimizu, Anal. Sci., 17, 1421-1424(2001)
  2. J. E. Riley, Jr, and R. M. Lindstrom, J. Radioanal. Nucl. Chem., 109, 109-115(1987)
  3. D. L. Anderson, W. C. Cunningham, and E. A. Mackey. Fresenius J. Anal. Chem., 338, 554-558(1990)
  4. A. Wyttenbach, J. Radioanal. Nucl. Chem., 8, 335-343 (1971)
  5. Guide to the Expression of Uncertainty in Measurement, 1st ed., ISO, Switzerland, 1993
  6. I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd ed., Blackwell Science, Victoria, Australia, 1993
  7. R. F. Fleming, Int. J. Appl. Radiat. Isot., 33, 1263-1268 (1982)
  8. K. Fujimoto, M. Shimura, and K. Yoshioka, Tetsu-tohagane, 85, 114-118(1999)
  9. S. Okubo, Hagane No Ohanashi, Nihon Kikaku Kyoukai, Tokyo, Japan, 1999
  10. R. M. Lindstrom, Report of Analysis 86/551/NUCLM/ 098, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1986
  11. C. Yonezawa, P. P. Ruska, H. Matsue, M. Magara, and T. Adachi, J. Radioanal. Nucl. Chem., 239, 571-575 (1999)
  12. R. L. Paul, Analyst 130, 99-103(2005)
  13. C. J. Park, Bull. Korean Chem. Soc. 23, 1541-1544 (2002)
  14. S. Baechler, P. Kudejova, J. Jolie, J.-L. Schenker, and N. Stritt, Nucl. Instr. and Meth, A488, 410-413(2002)
  15. Y. Sakai, C. Yonezawa, M. Magara, H. Sawahata, and Y. Ito, Nucl. Instr. and Meth., A353, 699-701(1994)
  16. D. Michael, and T. Robert, At. Spectrosc., 17, 128-132 (1996)
  17. S. H. Byun, G. M. Sun, and H. D. Choi, Nucl. Instr. and Meth., B213, 535-539(2004)
  18. K. Yamada, O. Kujirai, and R. Hasegawa, Anal. Sci., 9, 385-390(1993)
  19. K. Debertin, R.G. Helmer, Gamma- and X-Ray Spectrometry with Semiconductor Detectors, Elsevier Science Publisher B.V., Amsterdam, 1988
  20. E. Yasuhara, K. Sakata, and O. Hashimoto, ISIJ Int., 34, 99-107(1994)
  21. Certificate of Analysis, Standard Reference Material 951 Boric Acid, National Bureau of Standards, Washington, D.C., 1969
  22. A. G. Coedo, T. Dorado, B. J. Fernandez, and F. J. Alguacil, Anal. Chem., 68, 991-996(1996)
  23. M. D. Dyar, M. Wiedenbeck, D. Robertson, L. R. Cross, J. S. Delaney, K. Ferguson, C. A. Francis, E. S. Grew, C. V. Guidotti, R. L. Hervig, J. M. Hughes, J. Husler, W. Leeman, A.V. McGuire, D. Rhede, H. Rothe, R. L. Paul, I. Richards, and M. Yates, Geostandards Newsletter, 25, 441- 463(2001)