DOI QR코드

DOI QR Code

Enzymatic properties of the N- and C-terminal halves of human hexokinase II

  • Ahn, Keun-Jae ;
  • Kim, Jong-Sun ;
  • Yun, Mi-Jin ;
  • Park, Jeon-Han ;
  • Lee, Jong-Doo
  • Published : 2009.06.30

Abstract

Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher $K_m$ for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids ($\Delta$18) and a truncated N-terminal half lacking its first 18 amino acids ($\Delta$18N) have higher catalytic activity than other mutants tested. Similar results were obtained by PET-scan analysis using $^{18}F-FDG$. Our results collectively suggest that each domain of HK II possesses enzyme activity, unlike HK I, with the N-terminal half showing higher enzyme activity than the C-terminal half.

Keywords

Conformation;Deletion mutant;Hexokinase II;Kinetics properties;$^{18}F-FDG$

References

  1. Bork, P., Sander, C. and Valencia, A. (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 2, 31-40 https://doi.org/10.1002/pro.5560020104
  2. Schwab, D. A. and Wilson, J. E. (1989) Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc. Natl. Acad. Sci. U.S.A. 86, 2563-2567 https://doi.org/10.1073/pnas.86.8.2563
  3. Bianchi, M., Serafini, G., Bartolucci, E., Giammarini, C. and Magnani, M. (1998) Enzymatic properties of overexpressed human hexokinase fragments. Mol. Cell Biochem. 189, 185-193 https://doi.org/10.1023/A:1006962217495
  4. Tsai, H. J. and Wilson, J. E. (1995) Functional organization of mammalian hexokinases: characterization of chimeric hexokinases constructed from the N- and C-terminal domains of the rat type I and type II isozymes. Arch. Biochem. Biophys. 316, 206-214 https://doi.org/10.1006/abbi.1995.1029
  5. Di Chiro, G., DeLaPaz, R. L., Brooks, R. A., Sokoloff, L., Kornblith, P. L., Smith, B. H., Patronas, N. J., Kufta, C. V., Kessler, R. M., Johnston, G. S., Manning, R. G. and Wolf, A. P. (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32, 1323-1329 https://doi.org/10.1212/WNL.32.12.1323
  6. Ureta, T. (1982) The comparative isozymology of vertebrate hexokinases. Comp. Biochem. Physiol. B. 71B, 549-555
  7. Ardehali, H., Printz, R. L., Whitesell, R. R., May, J. M. and Granner, D. K. (1999) Functional interaction between the N- and C-terminal halves of human hexokinase II. J. Biol. Chem. 274, 15986-15989 https://doi.org/10.1074/jbc.274.23.15986
  8. Maru, Y, Afar, D. E., Witte, O. N. and Shibuya, M. (1996) The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain. J. Biol. Chem. 26, 15353-15357
  9. Vinuela, E., Salas, M. and Sols, A. (1963) Glucokinase and hexokinase in liver in relation to glycogen synthesis. J. Biol. Chem. 238, 1175-1177
  10. Waki, A., Kato, H. and Yano, R. (1998) The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nucl. Med. Biol. 25, 593-597 https://doi.org/10.1016/S0969-8051(98)00038-9
  11. Arora, K. K. and Pedersen, P. L. (1993) Glucose utilization by tumor cells: the enzyme hexokinase autophosphorylates both its N- and C-terminal halves. Arch. Biochem. Biophys. 304, 515-518 https://doi.org/10.1006/abbi.1993.1384
  12. Morris, M. T., DeBruin, C., Yang, Z., Chambers, J. W., Smith, K. S. and Morris, J. C. (2006) Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail. Eukaryot. Cell. 5, 2014-2023 https://doi.org/10.1128/EC.00146-06
  13. Ardehali, H., Yano, Y., Printz, R. L., Koch, S., Whitesell, R. R., May, J. M. and Granner, D. K. (1996) Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J. Biol. Chem. 271, 1849-1852 https://doi.org/10.1074/jbc.271.4.1849
  14. Frohlich, K., Entian, K. and Mecke, D. (1985) The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36, 105-111 https://doi.org/10.1016/0378-1119(85)90074-5
  15. White, T. K. and Wilson, J. E. (1989) Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half. Arch. Biochem. Biophys. 274, 373-393
  16. Wilson, J. E. (1997) An introduction to the isoenzymes of mammalian hexokinase types I-III. Biochem. Soc. Trans. 25, 103-108 https://doi.org/10.1042/bst0250103
  17. Polakis, P. G. and Wilson, J. E. (1985) An intact hydrophobic N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria. Arch. Biochem. Biophys. 236, 328-337 https://doi.org/10.1016/0003-9861(85)90633-2
  18. Postic, C., Shiota, M. and Magnuson, M. A. (2001) Cell- specific roles of glucokinase in glucose homeostasis. Recent Prog. Horm. Res. 56, 195-217 https://doi.org/10.1210/rp.56.1.195
  19. Tsai, H. J. and Wilson, J. E. (1996) Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Arch. Biochem. Biophys. 329, 17-23 https://doi.org/10.1006/abbi.1996.0186
  20. Tsai, H. J. (1999) Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes. Arch. Biochem. Biophys. 369, 149-156 https://doi.org/10.1006/abbi.1999.1326
  21. Easterby, J. and O'Brien, M. (1973) Purification and properties of pig-heart hexokinase. Eur. J. Biochem. 38, 201-211 https://doi.org/10.1111/j.1432-1033.1973.tb03051.x
  22. Cardenas, M. L., Cornish-Bowden, A. and Ureta, T. (1998) Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta. 1401, 242-264 https://doi.org/10.1016/S0167-4889(97)00150-X
  23. Gambhir, S. S., Czernin, J., Schwimmer, J., Silverman, D. H., Coleman, R. E. and Phelps, M. E. (2001) A tabulated summary of the FDG PET literature. J. Nucl. Med. 42, S1-93
  24. Wilson, J. E. (1995) Hexokinases. Rev. Physiol. Biochem. Pharmacol. 126, 65-198 https://doi.org/10.1007/BFb0049776
  25. Gelb, B. D., Adams, V., Jones, S. N., Griffin, L. D., MacGregor, G. R. and McCabe, E. R. B. (1992) Targeting of hexokinase 1 to liver and hepatoma mitochondria. Proc. Natl. Acad. Sci. U.S.A. 89, 202-206 https://doi.org/10.1073/pnas.89.1.202
  26. Aleshin, A. E., Zeng, C. and Bartunik, H. D. (1998) Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J. Mol. Biol. 282, 345-357 https://doi.org/10.1006/jmbi.1998.2017
  27. Colowick, S. P. (1973) The hexokinases. In PD Boyer, (ed) pp. 1-48, The Enzymes, Vol 9. Academic Press, New York, USA
  28. Tudyka, T. and Skerra, A. (1997) Glutathione S-transferase can be used as a C-terminal, enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of Escherichia coli. Protein Sci. 10, 2180-2187
  29. Zonouzi, R., Ashtiani, S. K., Hosseinkhani, S. and Baharvand, H. (2006) Kinetic properties of extracted lactate dehydrogenase and creatine kinase from mouse embryonic stem cell- and neonatal-derived cardiomyocytes. J. Biochem. Mol. Biol. 39, 426-431 https://doi.org/10.5483/BMBRep.2006.39.4.426

Cited by

  1. Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis vol.2014, 2014, https://doi.org/10.1155/2014/572097
  2. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms vol.281, pp.15, 2014, https://doi.org/10.1111/febs.12864
  3. Akt Phosphorylates HK-II at Thr-473 and Increases Mitochondrial HK-II Association to Protect Cardiomyocytes vol.288, pp.33, 2013, https://doi.org/10.1074/jbc.M113.482026
  4. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance vol.24, pp.1, 2016, https://doi.org/10.1016/j.cmet.2016.05.026
  5. Molecular and biochemical characterization of Eimeria tenella hexokinase vol.115, pp.9, 2016, https://doi.org/10.1007/s00436-016-5104-4
  6. Targeting hexokinase 2 in castration-resistant prostate cancer vol.2, pp.3, 2015, https://doi.org/10.4161/23723556.2014.974465
  7. Evaluation of biological properties of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride derivatives and their ability to inhibit hexokinase activity vol.27, pp.3, 2017, https://doi.org/10.1016/j.bmcl.2016.12.055
  8. Zebra Finch Glucokinase Containing Two Homologous Halves Is anIn SilicoChimera vol.2013, 2013, https://doi.org/10.1155/2013/790240
  9. Heterogeneity of glycolysis in cancers and therapeutic opportunities vol.92, pp.1, 2014, https://doi.org/10.1016/j.bcp.2014.07.019
  10. A Unique Hexokinase in Cryptosporidium parvum, an Apicomplexan Pathogen Lacking the Krebs Cycle and Oxidative Phosphorylation vol.165, pp.5, 2014, https://doi.org/10.1016/j.protis.2014.08.002
  11. Expression and role in glycolysis of human ADP-dependent glucokinase vol.364, pp.1-2, 2012, https://doi.org/10.1007/s11010-011-1212-8
  12. Hexokinase II–derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells vol.31, pp.5, 2017, https://doi.org/10.1096/fj.201601173R
  13. Master regulatory role of p63 in epidermal development and disease vol.75, pp.7, 2018, https://doi.org/10.1007/s00018-017-2701-z
  14. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation vol.38, pp.1, 2018, https://doi.org/10.1042/BSR20171666