Regulation of Fat and Fatty Acid Composition in Beef Cattle

  • Smith, Stephen B. (Department of Animal Science, Texas A&M University) ;
  • Gill, Clare A. (Department of Animal Science, Texas A&M University) ;
  • Lunt, David K. (Department of Animal Science, Texas A&M University) ;
  • Brooks, Matthew A. (Department of Animal Science, Texas A&M University)
  • Published : 2009.09.01


Fat composition of beef, taken here to mean marbling, can be manipulated by time on feed, finishing diet, and breed type. These three factors also strongly influence the fatty acid composition of beef. Both the amount of marbling and the concentration of monounsaturated fatty acids (MUFA) increase with time on feed in grain-fed and pasture-fed cattle, but much more dramatically in grain-fed cattle. High-concentrate diets stimulate the activity of adipose tissue stearoyl-CoA desaturase (SCD), which is responsible for the conversion of saturated fatty acids (SFA) to their $\Delta{9}$ desaturated counterparts. Also, grain feeding causes a depression in ruminal pH, which decreases those populations of ruminal microorganisms responsible for the isomerization and hydrogenation of polyunsaturated fatty acids (PUFA). The net result of elevated SCD activity in marbling adipose tissue and depressed ruminal isomerization/hydrogenation of dietary PUFA is a large increase in MUFA in beef over time. Conversely, pasture depresses both the accumulation of marbling and SCD activity, so that even though pasture feeding increases the relative concentration of PUFA in beef, it also increases SFA at the expense of MUFA. Wagyu and Hanwoo cattle accumulate large amounts of marbling and MUFA, and Wagyu cattle appear to be less sensitive to the effects of pastures in depressing overall rates of adipogenesis and the synthesis of MUFA in adipose tissues. There are small differences in fatty acid composition of beef from Bos indicus and Bos taurus cattle, but diet and time on feed are much more important determinants of beef fat content and fatty acid composition than breed type.


  1. Archibeque, S. L., D. K. Lunt, C. D. Gilbert, R. K. Tume and S. B. Smith. 2005. Fatty acid indices of stearoyl-CoA desaturase do not reflect actual stearoyl-CoA desaturase enzyme activities in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum-based diets. J. Anim. Sci. 83:1153-1166
  2. Casimir, D. and J. M. Ntambi. 1996. cAMP activates the expression of stearoyl-CoA desaturase gene 1 during early preadipocyte differentiation. J. Biol. Chem. 271:29847-29853
  3. Chang, J. H. P., D. K. Lunt and S. B. Smith. 1992. Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J. Nutr. 122:2074-2080
  4. Ekeren, P. A., D. R. Smith, D. K. Lunt and S. B. Smith. 1992. Ruminal biohydrogenation of fatty acids from high-oleate sunflower seeds. J. Anim. Sci. 70:2574-2580
  5. Lee, S. H., D. H. Yoon, N. J. Choi, S. H. Hwang, E. Y. Cheong, S. J. Oh, I. C. Cheong and C. S. Lee. 2005. Developmental relationship of unsaturated fatty acid composition and stearoyl-CoA desaturase mRNA level in Hanwoo steers' muscle. Asian-Aust. J. Anim. Sci. 18:562-566
  6. Lunt, D. K., C. B. Choi, K. Y. Chung and S. B. Smith. 2005. Production characteristics and carcass quality of Angus and Wagyu steers raised to US and Japanese endpoints. Journal of Animal and Veterinary Advances 4:949-953
  7. Lunt, D. K., R. R. Riley and S. B. Smith. 1993. Growth and carcass characteristics of Angus and American Wagyu Steers. Meat Sci. 34:327-334
  8. Martin, G. S., D. K. Lunt, K. G. Britain and S. B. Smith. 1999. Postnatal development of stearoyl coenzyme A desaturase gene expression and adiposity in bovine subcutaneous adipose tissue. J. Anim. Sci. 77:630-636
  9. Pitchford, W. S., M. P. B. Deland, B. D. Siebert, A. E. O. Malau-Aduli and C. D. K. Bottema. 2002. Genetic variation in fatness and fatty acid composition of crossbred cattle. J. Anim. Sci. 80:2825-2832
  10. Rule, D. C., M. D. MacNeil and R. E. Short. 1997. Influence of sire growth potential, time on feed, and growing-finishing strategy on cholesterol and fatty acids of the ground carcass and longissimus muscle of beef steers. J. Anim. Sci. 75:1525-1533
  11. Smith, S. B., M. Zembayashi, D. K. Lunt, J. O. Sanders and C. D. Gilbert. 2001. Carcass traits and microsatellite distributions of offspring of sires from three geographical regions of Japan. J. Anim. Sci. 79:3041-3051
  12. Waldman, R. C., G. G. Suess and V. H. Brungardt. 1968. Fatty acids of certain bovine tissue and their association with growth, carcass and palatability traits. J. Anim. Sci. 27:632-635
  13. Jiang, Z., J. J. Michal, D. J. Tobey, T. F. Daniels, D. C. Rule and M. D. MacNeil. 2008. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle. Int. J. Biol. Sci. 4:345-351
  14. Choi, Y., Y. Park, M. W. Pariza and J. M. Ntambi. 2001. Regulation of stearoyl-CoA desaturase activity by the trans-10,cis-12 isomer of conjugated linoleic acid in HepG2 cells. Biochem. Biophys. Res. Commun. 284:689-693
  15. Westerling, D. B. and H. B. Hedrick. 1979. Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48:1343-1348
  16. Cameron, P. J., M. Rogers, J. Oman, S. G. May, D. K. Lunt and S. B. Smith. 1994. Stearoyl-CoA desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers. J. Anim. Sci. 72:2624-2628
  17. Huerta-Leidenz, N. O., H. R. Cross, J. W. Savell, D. K. Lunt, J. F. Baker, L. S. Pelton and S. B. Smith. 1993. Comparison of the fatty acid composition of subcutaneous adipose tissue from mature Brahman and Hereford cows. J. Anim. Sci. 71:625-630
  18. Taylor, J. F., L. L. Coutinho, K. K. Herring, D. S. Gallagher, R. A. Brenneman, N. Burney, J. O. Sanders, J. W. Turner, S. B. Smith, R. K. Miller, J. W. Savell and S. K. Davis. 1998. Candidate gene analysis of GH1 for effects on growth and carcass characteristics of cattle. Anim. Genet. 29:194-201
  19. Zembayashi, M., D. K. Lunt and S. B. Smith. 1999. Dietary tea reduces the iron content of beef. Meat Sci. 53:221-226
  20. Chung, K.Y., D. K. Lunt, C. B. Choi, S. H. Chae, R. D. Rhoades, T. H. Adams, B. Booren and S. B. Smith. 2006b. Lipid characteristics of subcutaneous adipose tissue and M. longissimus thoracis of Angus and Wagyu steers fed to U.S. and Japanese endpoints. Meat Sci. 73:432-441
  21. Kucek, O., B. W. Hess, P. A. Ludden and D. C. Rule. 2001. Effect of forage:concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. J. Anim. Sci. 79:2233-2240
  22. St John, L. C., D. K. Lunt and S. B. Smith. 1991. Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 69:1064-1073
  23. Malau-Aduli, A. E. O., B. D. Siebert, C. D. K. Bottema and W. S. Pitchford. 1997. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 48:715-722
  24. Daniel, Z. C., R. J. Wynn, A. M. Salter and P. J. Buttery. 2004. Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: the role of stearoyl-CoA desaturase. J. Anim. Sci. 82:747-758
  25. Fukuda, S., Y. Suzuki, M. Murai, N. Asanuma and T. Hino. 2006. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. J. Dairy Sci. 89:1043-1051
  26. Chung, K. Y., C. B. Choi, H. Kawachi, H. Yano and S. B. Smith. 2006a. Trans-10, cis-12 conjugated linoleic acid antagonizes arginine-promoted differentiation of bovine preadipocytes. Adipocytes 2:93-100
  27. Jung, K. K. and C. B. Choi. 2003. Development of technologies to improve competitiveness of Hanwoo. Report to the Ministry of Agriculture, pp. 85-98. Seoul, Korea
  28. Or-Rashid, M. M., N. E. Odongo and B. W. McBride. 2007. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and oddchain and branched-chain fatty acids. J. Anim. Sci. 85:1228-1234
  29. Wallace, J. R., L. C. Chaudhary, N. McKain, N. R. McEwan, A. J. Richardson, P. E. Vercoe, N. D. Walker and D. Paillard. 2006. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265:195-201
  30. Duckett, S. K., S. L. Pratt and E. Pavan. 2009. Corn oil or corn grain supplementation to steers grazing endophyte-free tall fescue. II. Effects on subcutaneous fatty acid content and lipogenic gene expression. J. Anim. Sci. 87:1120-1128
  31. May, S. G., C. A. Sturdivant, D. K. Lunt, R. K. Miller and S. B. Smith. 1993. Comparison of sensory characteristics and fatty acid composition between Wagyu crossbred and Angus steers. Meat Sci. 35:289-298
  32. St. John, L. C., C. R. Young, D. A. Knabe, G. T. Schelling, S. M. Grundy and S. B. Smith. 1987. Fatty acid profiles and sensory and carcass traits of tissues from steers and swine fed an elevated monounsaturated fat diet. J. Anim. Sci. 64:1441-1447
  33. Choi, Y., Y. Park, J. M. Storkson, M. W. Pariza and J. M. Ntambi. 2002. Inhibition of stearoyl-CoA desaturase activity by the cis-9,trans-11 isomer and the trans-10,cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells. Biochem. Biophys. Res. Commun. 294:785-790
  34. Smith, S. B., A. Yang, T. W. Larsen and R. K. Tume. 1998. Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation. Lipids 33:197-207
  35. Wood, J. D., R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. R. Sheard and M. Enser. 2004. Effects of fatty acids on meat quality: a review. Meat Sci. 66:21-32
  36. Zembayashi, M., K. Nishimura, D. K. Lunt and S. B. Smith. 1995. Effect of breed type and sex on the fatty acid composition of subcutaneous and intramuscular lipids of finishing steers and heifers. J. Anim. Sci. 73:3325-3332
  37. Devillard, E., F. M. McIntosh, C. J. Newbold and R. J. Wallace. 2006. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br. J. Nutr. 96:697-704
  38. Malau-Aduli, A. E. O., B. D. Siebert, C. D. K. Bottema and W. S. Pitchford. 1998. Breed comparisons of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci. 76:766-773
  39. Waters, S. M., J. P. Kelly, P. O'Boyle, A. P. Moloney and D. A. Kenny. 2009. Effect of level and duration of dietary n-3 polyunsaturated fatty acid supplementation on the transcriptional regulation of $\Delta$9-desaturase in muscle of beef cattle. J. Anim. Sci. 87:244-253
  40. Huerta-Leidenz, N. O., H. R. Cross, J. W. Savell, D. K. Lunt, J. F. Baker and S. B. Smith. 1996. Fatty acid composition of subcutaneous adipose tissue from male calves at different stages of growth. J. Anim. Sci. 74:1256-1264
  41. Chung, K. Y., D. K. Lunt, H. Kawachi, H. Yano and S. B. Smith. 2007. Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short- and long-fed Angus and Wagyu steers fed corn- or hay-based diets. J. Anim. Sci. 85:380-387
  42. Vossenberg, J. L. C. M. and K. N. Joblin. 2003. Biohydrogenation of c18 unsaturated fatty acids to stearic acid by a strain of butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 37:424-428
  43. Zembayashi, M. 1994. Beef production. Yokendo, Ltd., Tokyo, Japan
  44. Sturdivant, C. A., D. K. Lunt, C. Smith and S. B. Smith. 1992. Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi of Wagyu cattle. Meat Sci. 32:449-458

Cited by

  1. Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle vol.6, pp.12, 2011,
  2. Comparison of Meat Quality Traits, Free Amino Acid and Fatty Acid on Longissimus Lumborum Muscles from Hanwoo, Holstein and Angus Steers, Fattened in Korea vol.32, pp.5, 2012,
  3. Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle vol.24, pp.3-4, 2013,
  4. Physicochemical Meat Quality and Fatty Acid Compositions of Striploin, Chuck Tender, Eye of Round Muscles from Holstein Steer Beef Slaughtered at Different Fattening Periods vol.33, pp.5, 2013,
  5. Novel single nucleotide polymorphisms of bovine SREBP1 gene is association with fatty acid composition and marbling score in commercial Korean cattle (Hanwoo) vol.40, pp.1, 2013,
  6. Identification of novel single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) gene associated with fatty acid composition in Korean cattle vol.40, pp.4, 2013,
  7. Genetic variation in fatty acid composition of subcutaneous fat in cattle vol.53, pp.2, 2013,
  8. Opportunities and Implications of Pasture-Based Lamb Fattening to Enhance the Long-Chain Fatty Acid Composition in Meat vol.14, pp.1, 2014,
  9. Identification of Exonic Nucleotide Variants of the Thyroid Hormone Responsive Protein Gene Associated with Carcass Traits and Fatty Acid Composition in Korean Cattle vol.27, pp.10, 2014,
  10. Physico-chemical Meat Qualities of Loin and Top Round Beef from Holstein Calves with Different Slaughtering Ages vol.34, pp.5, 2014,
  11. Perfil de ácidos graxos da carne de novilhos europeus e zebuínos alimentados com milheto vol.49, pp.1, 2014,
  12. Impact of calving seasons and feeding systems in western Canada. II. Meat composition and organoleptic quality of steaks vol.94, pp.4, 2014,
  13. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat vol.117, pp.9, 2015,
  14. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle vol.29, pp.2, 2015,
  15. The scope for manipulating the polyunsaturated fatty acid content of beef: a review vol.6, pp.1, 2015,
  16. Comparison of fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada vol.95, pp.1, 2015,
  17. Effects of Chromium Methionine Supplementation on Blood Metabolites and Fatty Acid Profile of Beef during Late Fattening Period in Holstein Steers vol.29, pp.3, 2016,
  18. Fatty acid profile of meat, diurnal changes in volatile fatty acids, rumen fluid parameters, and growth performance in Korean native (Hanwoo) steers fed high- and low-forage diets supplemented with chromium-methionine vol.45, pp.8, 2016,
  19. Fatty acid profile of British Columbia suckler beef vol.96, pp.2, 2016,
  20. Haplotypes for Type, Degree, and Rate of Marbling in Cattle Are Syntenic with Human Muscular Dystrophy vol.2017, pp.2314-4378, 2017,
  21. Genetics of Marbling in Wagyu Revealed by the Melting Temperature of Intramuscular and Subcutaneous Lipids vol.2017, pp.2314-5765, 2017,
  22. L.) or soybean pp.00225142, 2017,
  23. Feeding dried distillers grains with solubles to lactating beef cows: impact of excess protein and fat on post-weaning progeny growth, glucose tolerance and carcass traits pp.1751-732X, 2017,
  24. Estimates of genetic parameters for fatty acid compositions in the longissimus dorsi muscle of Hanwoo cattle pp.1751-732X, 2017,
  25. Effect of muscle type, sire breed, and time of weaning on fatty acid composition of finishing steers1 vol.90, pp.2, 2012,
  26. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue of feedlot steers fed supplementary palm oil or soybean oil1 vol.91, pp.5, 2013,
  27. Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle1 vol.94, pp.10, 2016,
  28. Influence of subcutaneous fat thickness on the carcass characteristics and meat quality of beef cattle vol.48, pp.1, 2017,
  29. Performance and fatty acid profile of Holstein calves slaughtered at different weights vol.47, pp.0, 2018,
  30. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle vol.8, pp.1, 2018,
  31. Fatty acid composition in muscles from lambs fed diets containing agroindustrial co-products vol.47, pp.0, 2018,
  32. Fatty acid levels in the muscle tissue of eight beef cattle breeds vol.87, pp.3, 2018,
  33. Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat pp.1751-732X, 2018,
  34. Effects of dietary antioxidant supplementation of steers finished with 30% wet distillers grains plus solubles on fatty acid profiles and display life of strip loins vol.58, pp.10, 2018,
  35. The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle vol.98, pp.8, 2015,