DOI QR코드

DOI QR Code

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Yoshimoto, Kohki (Plant Science Center, The Institute of Physical and Chemical Research) ;
  • Ohsumi, Yoshinori (Department of Cell Biology, National Institute for Basic Biology) ;
  • Jeon, Jong-seong (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • An, Gynheung (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Received : 2008.08.15
  • Accepted : 2008.10.22
  • Published : 2009.01.31

Abstract

Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.

Acknowledgement

Supported by : Crop Functional Genomic Center, Rural Development Administration, Ministry of Science and Technology, Korea Research Foundation

References

  1. Banergee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457 https://doi.org/10.1105/tpc.106.042473
  2. Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme $APG_{7}$ is required for proper nutrient recycling and senescence in Arabidopsis thaliana J. Biol. Chem. 277, 33105-33114 https://doi.org/10.1074/jbc.M204630200
  3. Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132-1139 https://doi.org/10.1104/pp.106.093864
  4. Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., and An, G. (2006).Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 47, 1457-1472 https://doi.org/10.1093/pcp/pcl013
  5. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193 https://doi.org/10.1104/pp.011024
  6. Kramer, E.M., and Bennett, M.J. (2006). Auxin transport: a field in flux. Trends Plant Sci. 11, 382-386 https://doi.org/10.1016/j.tplants.2006.06.002
  7. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R. (1990). Determina-tion of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
  8. Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces. Gene 192, 245-250 https://doi.org/10.1016/S0378-1119(97)00084-X
  9. Patel, S., Caplan, J., and Dinesh-Kumar, S.P. (2006). Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9, 391-396 https://doi.org/10.1016/j.pbi.2006.05.007
  10. Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., and Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 56, 2839-2849 https://doi.org/10.1093/jxb/eri276
  11. Tanida, I., Mitsushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Kominami, E. (1999). APG7P/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367-1379 https://doi.org/10.1091/mbc.10.5.1367
  12. Tsukda, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 https://doi.org/10.1016/0014-5793(93)80398-E
  13. Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007a). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143, 291-299 https://doi.org/10.1104/pp.106.092106
  14. Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903-913 https://doi.org/10.1083/jcb.124.6.903
  15. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Kim, C., and An, G. (2000b). Tissue-preferential expression of a rice $\alpha$-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 123, 1005-1014 https://doi.org/10.1104/pp.123.3.1005
  16. Shao, Y., Gao, Z., Feldman, T., and Jiang, X. (2007). Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 3, 10-16 https://doi.org/10.4161/auto.3270
  17. Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 33, 273-278 https://doi.org/10.1007/s11033-006-9011-0
  18. Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996). Structural and functional analyses of ^mdR, a gene involved in autophagy in yeast. Gene 178, 139-143 https://doi.org/10.1016/0378-1119(96)00354-X
  19. Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The ATG12-ATG5 conjugate has a novel $E_{3}$-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302 https://doi.org/10.1074/jbc.C700195200
  20. Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696 https://doi.org/10.1126/science.1117768
  21. Kim, Y.H., Song, T.B., Kim, C.H., Cho, M.K., Kim, K.M., Yang, S.Y., Ahn, B.W., and Joo, E.H. (2005). Lipid peroxidation and prooxidative activity stimulating the oxidative modification of proteins in the uterine venous plasma of preeclampsia. Korean J. Fetal. Med. 1, 23-30
  22. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  24. Xiong, Y., Contento, A.L., and Bassham, D.C. (2007b). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3, 257-258 https://doi.org/10.4161/auto.3847
  25. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983 https://doi.org/10.1105/tpc.104.025395
  26. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398 https://doi.org/10.1038/26506
  27. Kopitz, J., Kisen, G.O., Gordon, P.B., Bohley, P., and Seglen, P.O. (1990). Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol. 111, 941-953 https://doi.org/10.1083/jcb.111.3.941
  28. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinasedeficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311 https://doi.org/10.1083/jcb.119.2.301
  29. Contento, A.L., Xiong, Y., and Bassham, D. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42, 598-608 https://doi.org/10.1111/j.1365-313X.2005.02396.x
  30. Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353 https://doi.org/10.1534/genetics.107.086199
  31. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577 https://doi.org/10.1016/j.cell.2005.03.007
  32. Biederbick, A., Kern, H.F., and Elsasser, H.P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol. 66, 3-14
  33. Hattori, T., Terada, T., and Hamasuna, S.T. (1994). Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol. Biol. 24, 805-810 https://doi.org/10.1007/BF00029862
  34. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209 https://doi.org/10.1146/annurev.phyto.42.040803.140421
  35. Mortimore, G.E., Hutson, N.J., and Surmacz, C.A. (1983). Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl. Acad. Sci. USA 80, 2179-2183 https://doi.org/10.1073/pnas.80.8.2179
  36. Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., and Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18, 5234-5241 https://doi.org/10.1093/emboj/18.19.5234
  37. Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Cur. Opin. Plant Biol. 10, 1-7 https://doi.org/10.1016/j.pbi.2007.06.006
  38. Kwon, S.I., and Park, O.K. (2008). Autophagy in plants. J. Plant Biol. 51, 313-320 https://doi.org/10.1007/BF03036132
  39. Jung, K.H., Han, M.J., Lee, D.Y., Lee, Y.S., Schreiber, L., Franke, R., Faust, A., Yephremov, A., Saedler, H., Kim, Y.W., et al. (2006). Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18, 3015-3032 https://doi.org/10.1105/tpc.106.042044
  40. Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA gene tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489-502 https://doi.org/10.1023/B:PLAN.0000038257.93381.05
  41. Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652 https://doi.org/10.1093/pcp/pcl031
  42. Moriyasu, Y., and Ohsumi, Y. (1996). Autophagy in tobacco suspen- sioncultured cells in response to sucrose starvation. Plant Physiol. 111, 1233-1241 https://doi.org/10.1104/pp.111.4.1233
  43. Schworer, C.M., and Mortimore, G.E. (1979). Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl. Acad. Sci. USA 76, 3169-3173 https://doi.org/10.1073/pnas.76.7.3169
  44. Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110 https://doi.org/10.1104/pp.105.060673
  45. An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047 https://doi.org/10.1104/pp.103.030478
  46. Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2-11 https://doi.org/10.4161/auto.2092
  47. Funakoshi, T., Matsuura, A., Noda, T., and Ohsumi, Y. (1997). Analysis of APG13 gene involved in autophagy in yeast, Saccharomyces Gene 192, 207-213 https://doi.org/10.1016/S0378-1119(97)00031-0
  48. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S.Y., Yang, K., et al. (2000a). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  49. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132 https://doi.org/10.1111/j.1365-313X.2005.02610.x
  50. Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S., and Stadtman, E.R. (1987). Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491
  51. Woo, Y.M., Park, H.J., Su'udi, M., Yang, J.I., Park, J.J., Back, K., Park, Y.M., and An, G. (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65, 125-136 https://doi.org/10.1007/s11103-007-9203-6