Quantitative Trait Loci Affecting Rous Sarcoma Virus Induced Tumor Regression Trait in F2 Intercross Chickens

  • Uemoto, Y. (National Livestock Breeding Center) ;
  • Saburi, J. (National Livestock Breeding Center) ;
  • Sato, S. (National Livestock Breeding Center) ;
  • Odawara, S. (National Livestock Breeding Center) ;
  • Ohtake, T. (National Livestock Breeding Center) ;
  • Yamamoto, R. (National Livestock Breeding Center) ;
  • Miyata, T. (National Livestock Breeding Center) ;
  • Suzuki, K. (STAFF Institute) ;
  • Yamashita, H. (Tokai University) ;
  • Irina, C. (National Institute of Livestock and Grassland Science) ;
  • Plastow, G. (University of Alberta) ;
  • Mitsuhashi, T. (National Institute of Livestock and Grassland Science) ;
  • Kobayashi, E. (National Livestock Breeding Center)
  • Received : 2009.02.24
  • Accepted : 2009.05.18
  • Published : 2009.10.01


We performed a genome-wide linkage and quantitative trait locus (QTL) analysis to confirm the existence of QTL affecting Rous Sarcoma Virus (RSV) induced tumor regression, and to estimate their effects on phenotypic variance in an F2 resource population. The F2 population comprised 158 chickens obtained by crossing tumor regressive White Leghorn (WL) and tumor progressive Rhode Island Red (RIR) lines was measured for tumor formation after RSV inoculation. Forty-three tumor progressive and 28 tumor regressive chickens were then used for genome-wide linkage and QTL analysis using a total of 186 microsatellite markers. Microsatellite markers were mapped on 20 autosomal chromosomes. A significant QTL was detected with marker LEI0258 located within the MHC B region on chromosome 16. This QTL had the highest F ratio (9.8) and accounted for 20.1% of the phenotypic variation. Suggestive QTL were also detected on chromosomes 4, 7 and 10. The QTL on chromosome 4 were detected at the 1% chromosome-wide level explaining 17.5% of the phenotypic variation, and the QTLs on chromosome 7 and 10 were detected at the 5% chromosome-wide level and explained 11.1% and 10.5% of the phenotypic variation, respectively. These results indicate that the QTLs in the non-MHC regions play a significant role in RSV-induced tumor regression. The present study constitutes one of the first preliminary reports in domestic chickens for QTLs affecting RSV-induced tumor regression outside the MHC region.


  1. Kaufman, J. and K. Venugopal. 1998, The importance of MHC for Rous sarcoma virus and Marek's disease virus - some Payneful considerations, Avian Pathol. 27:82-87
  2. Knap, P. W. and S. C. Bishop. 2000, Relationships between genetic change and infectious disease in domestic livestock. In: The challenge of genetic change in animal production (Ed. W. G. Hill, S. C. Bishop, B. McGuirk, J. C. McKay, G. Simm and A. J. Webb) British Society of Animal Science, Edinburgh, Occasional publication no. 27, pp. 65-80
  3. Praharaj, N., C. Beaumont, G. Dambrine, D. Soubieux, L. Merat, D. Bouret, G. Luneau, J. M. Alletru, M. H. Pinard-Van der Laan, P. Thoraval and S. Mignon-Grasteau. 2004, Genetic analysis of the growth curve of rous sarcoma virus-induced tumors in chickens, Poult. Sci. 83:1479-1488
  4. Visscher, P. M., C. S. Haley and S. A. Knott. 1996, Mapping QTL for binary traits in backcross and F2 populations, Genet. Res.68:55-63
  5. Gelman, I. H. and H. Hanafusa. 1993, src-Specific immune regression of Rous sarcoma virus-induced tumors, Cancer Res.15:915-920
  6. Vallejo, R. L., L. D. Bacon, H. C. Liu, R. L. Witter, M. A. M. Groenen, J. Hillel and H. H. Cheng. 1998, Genetic mapping of Marek's disease virus induced tumors in F2 intercross chickens, Genetics 148:349-360
  7. Brown, D. W., W. M. Collins, R. M. Zsigray and W. E. Briles. 1984, A non-MHC genetic influence on response to Rous sarcoma virus-induced tumors in chickens, Avian Dis. 28:884-899
  8. Carte, I. F., J. H. Smith, C. R. Weston and T. F. Savage. 1972, immunogenetics and regression of RSV (RAV-1) wing web tumors in chickens, Poult. Sci. 51:1792 (Abstr)
  9. Svoboda, J., J. Plachy, J. Hejnar, I. Karakoz, R. V. Cuntaka and J. Geryk. 1992, Tumor induction by the LTR, v-src, LTR DNA in four B (MHC) congenic lines of chickens, Immunogenetics 35:309-315
  10. Green, P., K. Falls and S. Crooks. 1990, Documentation for CRIMAP. Version 2.4. Washington University School of Medicine, ST. Louis, MO
  11. Okada, I., Y. Yamada, M. Akiyama, I. Nishimura and N. Kano. 1977, Changes in polymorphic gene frequencies in strains of chickens selected for resistance to marek's disease, Br. Poult. Sci. 18:237-246
  12. Rous, P. 1911, A sarcoma of the fowl transmissible by an agent seperable from the tumor cell, J. Exp. Med. 13:397-411
  13. Bates, P., L. Rong, H. E. Varmus, J. A. T. Young and L. B. Crittenden. 1998, Genetic mapping of the cloned subgroup A avian sarcoma and leukosis virus receptor gene to the TVA locus, J. Virol. 72:2505-2508
  14. McKay, J. C., N. F. Barton, A. N. M. Koerhuis and J. McAdam. 2000, The challenge of genetic change in the broiler chicken. In: The challenge of genetic change in animal production (Ed. W. G. Hill, S. C. Bishop, B. McGuirk, J. C. McKay, G. Simm and A. J. Webb) British Society of Animal Science, Edinburgh, Occasional publication no. 27, pp. 1-7
  15. Taylor, R. L. 2004, Major histocompatibility (B) complex control of responses against Rous sarcomas, Poult. Sci. 83:638-649
  16. Cole, R. K. 1968, Studies on genetic resistance to Marek's disease, Avian Dis. 12:9-28
  17. Elleder, D., D. C. Melder, K. Trejbalova, J. Svoboda and M. J. Federspiel. 2004, Two different molecular defects in the tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses, J. Virol. 78:13489-13500
  18. Hirooka, H., D. J. de Koning, J. A. van Arendonk, B. Harlizius, P. N. de Groot and H. Bovenhuis. 2002, Genome scan reveals new coat color loci in exotic pig cross. J. Hered. 93:1-8
  19. Seaton, G., C. S. Haley, S. A. Knott, M. Kearsey and P. M. Visscher. 2002, QTL EXPRESS: mapping quantitative trait loci in simple and complex pedigrees, Bioinformatics 18:339-340
  20. Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller and L. Andersson. 1998, Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs, Genetics 149:1069-1080
  21. Yonash, N., L. D. Bacon, R. L. Witter and H. H. Cheng. 1999, High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease, Anim. Genet. 30:126-135
  22. Bacon, L. D., R. L. Witter, L. B. Crittenden, A. Fadly and J. Motta.1981, B-haplotype influence on Marek's disease, Rous sarcoma, and lymphoid leukosis virus-induced tumors in chickens. Poult. Sci. 60:1132-1139
  23. Lamont, S. J. 1998, Impact of genetics on disease resistance, Poult. Sci. 77:1111-1118
  24. Collins, W. M., W. E. Briles, R. M. Zsigray, W. R. Dunlop, A. C. Corbett, K. K. Clark, J. L. Marks and T. P. MacGrail. 1977, The B locus (MHC) in the chicken: Association with the fate of RSV-induced tumors, Immunogenetics 5:333-343
  25. Abasht, B., J. C. Dekkers and S. J. Lamont. 2006, Review of quantitative trait loci identified in the chicken, Poult. Sci. 85: 2079-2096
  26. Haley, C. S., S. A. Knott and J. M. Elsen. 1994, Mapping quantitative trait loci in crosses between outbred lines using least squares, Genetics 136:1195-1207
  27. Calnek, B. W., D. A. Higgins and J. Fabricant. 1975, Rous sarcoma regression in chickens resistant or susceptible to Marek's disease, Avian Dis. 19:473-482
  28. Fulton, J., H. R. Juul-Madsen, C. M. Ashwell, A. A. McCarron, J. A. Arthur, N. P. O'Sullivan and R. L. Taylor. 2006, Molecular genotype identification of the gallus gallus major histocompatibility complex, Immunogenetics 58:407-421

Cited by

  1. Structural analysis of MHC alleles in an RSV tumour regression chicken using a BAC library vol.43, pp.3, 2011,