Identification and Molecular Characterization of PERV Gamma1 Long Terminal Repeats

  • Huh, Jae-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Dae-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Ha, Hong-Seok (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Ahn, Kung (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Chang, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2008.08.20
  • Accepted : 2008.11.11
  • Published : 2009.01.31


Porcine endogenous retroviruses (PERVs) gamma1 in the pig genome have the potential to act as harmful factors in xenotransplantation (pig-to-human). Long terminal repeats (LTRs) are known to be strong promoter elements that could control the transcription activity of PERV elements and the adjacent functional genes. To investigate the transcribed PERV gamma1 LTR elements in pig tissues, bioinformatic and experimental approaches were conducted. Using RT-PCR amplification and sequencing approaches, 69 different transcribed LTR elements were identified. And 69 LTR elements could be divided into six groups (15 subgroups) by internal variation including tandem repeated sequences, insertion and deletion (INDEL). Remarkably, all internal variations were indentified in U3 region of LTR elements. Taken together, the identification and characterization of various PERV LTR transcripts allow us to extend our knowledge of PERV and its transcriptional study.


Supported by : Rural Development Administration


  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, W., Miller, W., and Lipman, D.J. (1997). Gapped Blast and PSIBLAST: a new generation of protein database search program. Nucleic Acids Res. 25, 3389-3402
  2. Huh, J.W., Ha, H.S., Kim, Y.J., Lee, J.R., Kim, D.S., Cho, B.W., and Kim, H.S. (2007a). Methylation and promoter activity of long terminal repeats from porcine endogenous retroviruses in the Pig, Sus scrofa. Korean J. Genet. 29, 171-176
  3. Huh, J.W., Cho, B.W., Kim, D.S., Ha, H.S., Yi, J.M., Kim, Y.J., Lee, J.R., Ahn, K., Lee, W.H., and Kim, H.S. (2007b). Long terminal repeats of porcine endogenous retroviruses in Sus scrofa. Arch. Virol. 52, 2271-2276
  4. Karlas, A., Kurth, R., and Denner, J. (2004). Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology 325, 18-23
  5. Lee, J.H., Webb, G.C., Allen, R.D., and Moran, C. (2002). Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J. Virol. 76, 5548-5556
  6. Ling, J., Pi, W., Bollag, R., Zeng, S., Keskintepe, M., Saliman, H., Krantz, S., Whitney, B., and Tuan, D. (2002). The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells. J. Virol. 76, 2410-2423
  7. Mang, R., Maas, J., Chen, X., Goudsmit, J., and van der Kuyl, A.C. (2001). Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J. Gen. Virol. 82, 1829-1834
  8. Patience, C., Takeuchi, Y., and Weiss, R.A. (1997). Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 282-286
  9. Patience, C., Switzer, W.M., Takeuchi, Y., Griffiths, D.J., Goward, M.E., Heneine, W., Stoye, J.P., and Weiss, R.A. (2001). Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 75, 2771-2775
  10. Woods, W.A., Papas, T.S., Hirumi, H., and Chirigos, M.A. (1973). Antigenic and biochemical characterization of the C-type particle of the stable porcine kidney cell line PK-15. J. Virol. 12, 1184-1186
  11. Denner, J., Specke, V., Thiesen, U., Karlas, A., and Kurth, R. (2003). Genetic alteration of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 314, 125-133
  12. Krach, U., Fischer, N., Czauderna, F., and Tonjes, R.R. (2001). Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J. Virol. 75, 5465-5472
  13. Akiyoshi, D.E., Denaro, M., Zhu, H., Greenstein, J.L., Banerjee, P.T., and Fishman, J.A. (1998). Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J. Virol. 72, 4503-4507
  14. Herring, C., Quinn, G., Bower, R., Parsons, N., Logan, N.A., Brawley, A., Elsome, K., Whittam, A., Fernandez-Suarez, X.M., Cunningham, D., et al. (2001). Mapping full-length porcine endogenous retroviruses in a large white pig. J. Virol. 75, 12252-12265
  15. Niebert, M., Rogel-Gaillard, C., Chardon, P., and Tonjes, R.R. (2002). Characterization of chromosomally assigned replicationcompetent gamma porcine endogenous retroviruses derived from a large white pig and expression in human cells. J. Virol. 76, 2714-2720
  16. Takeuchi, Y., Patience, C., Magre, S., Weiss, R.A., Banerjee, P.T., Le Tissier, P., and Stoye, J.P. (1998). Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72, 9986-9991
  17. Dieckhoff, B., Karlas, A., Hofmann, A., Kues, W.A., Petersen, B., Pfeifer, A., Niemann, H., Kurth, R., and Denner, J. (2007). Inhibition of porcine endogenous retroviruses (PERVs). in primary porcine cells by RNA interference using lentiviral vectors. Arch. Virol. 152, 629-634
  18. Klymiuk, N., Muller, M., Brem, G., and Aigner, B. (2006). Phylogeny, recombination and expression of porcine endogenous retrovirus $\gamma$2 nucleotide sequences. J. Gen. Virol. 87, 977-986
  19. Martin, U., Kiessl, V., Blusch, H., Haverich, A., von der Helm, K., Herden, T., and Steinhof, G. (1998). Expression of pig endogenous retrovirus by primary porcine endotherial cells and infection of human cells. Lancet 352, 692-694
  20. Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245
  21. Niebert, M., and Tonjes, R.R. (2005). Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 79, 649-654
  22. Czauderna, F., Fischer, N., Boller, K., Kurth, R., and Tonjes, R.R. (2000). Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J. Virol. 74, 4028-4038
  23. Le Tissier, P., Stoye, J.P., Takeuchi, Y., Patience, C., and Weiss, R.A. (1997). Two sets of human-tropic pig retrovirus. Nature 389, 681-682
  24. Takefman, D.M., Spear, G.T., Saifuddin, M., and Wilson, C.A. (2002). Human CD59 incorporation into porcine endogenous retrovirus particles: implications for the use of transgenic pigs for xenotransplantation. J. Virol. 76, 1999-2002
  25. Scheef, G., Fischer, N., Flory, E., Schmitt, I., and Tonjes, R.R. (2002). Transcriptional regulation of porcine endogenous retroviruses released from porcine and infected human cells by heterotrimeric protein complex NF-Y and impact of immunosuppressive drugs. J. Virol. 76, 12553-12563
  26. Huh, J.W., Hong, K.W., Yi, J.M., Kim, T.H., Takenaka, O., Lee, W.H., and Kim, H.S. (2003). Molecular phylogeny and evolution of the human endogenous retrovirus HERV-W LTR family in hominoid primates. Mol. Cells 15, 122-126
  27. Preuss, T., Fischer, N., Boller, K., and Tonjes, R.R. (2006). Isolation and characterization of an infectious replication-competent molecular clone of ecotropic porcine endogenous retrovirus class C. J. Virol. 80, 10258-10261
  28. Scheef, G., Fischer, N., Krach, U., and Tonjes, R.R. (2001). The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J. Virol. 75, 6933-6940
  29. Wilson, C.A., Wong, S.W., Muller, J., Davidson, C.E., Rose, T.M., and Burd, P. (1998). Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J. Virol. 72, 3082-3087
  30. Wilson, C.A., Laeeq, S., Ritzhaupt, A., Colon-Moran, W., and Yoshimura, F.K. (2003). Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J. Virol. 77, 142-149
  31. Sellars, M.J., Vuocolo, T., Leeton, L.A., Coman, G.J., Degnan, B.M., and Preston, N.P. (2007). Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J. Biotechnol. 129, 391-399
  32. Tonjes, R.R., and Niebert, M. (2003). Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J. Virol. 77, 12363-12368
  33. Harrison, I., Takeuchi, Y., Bartosch, B., and Stoye, J.P. (2004). Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 78, 13871-13879
  34. Quinn, G., and Langford, G. (2001). The porcine endogenous retrovirus long terminal repeat contains a single nucleotide polymorphism that confers distinct differences in estrogen receptor binding affinity between PERV A and PERV B/C subtypes. Virology 286, 83-90
  35. Moalic, Y., Blanchard, Y., Felix, H., and Jestin, A. (2006). Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J. Virol. 80, 10980-10988