A Simple Polymerase Chain Reaction-based Method for the Discrimination of Three Chicken Breeds

  • Kubo, Y. (Research Support Center and Laboratory of Nutritional Molecular Genetics, National Institute of Livestock and Grassland Science) ;
  • Plastow, G. (Department of Agricultural, Food and Nutritional Science, University of Alberta) ;
  • Mitsuhashi, Tadayoshi (Research Support Center and Laboratory of Nutritional Molecular Genetics, National Institute of Livestock and Grassland Science)
  • Received : 2008.10.10
  • Accepted : 2009.02.02
  • Published : 2009.09.01


A large number of branded chicken products exist in Japan, and in some cases, the breed of chicken is an important factor used to attract consumer interest in the retail product. In order to establish a simple method for verifying such breed claims we applied the amplified fragment length polymorphism (AFLP) technique to nine chicken breeds (White Cornish, Red Cornish, White Plymouth Rock, New Hampshire, Rhode Island Red, Barred Plymouth Rock, Hinaidori, Tosajidori, Tsushimajidori) to search for molecular markers able to discriminate chicken breeds. Three breed-specific single nucleotide polymorphisms (SNP) were identified, one for each of Hinaidori, Tosajidori, or New Hampshire. A total of 219 individuals from the nine breeds were analyzed using a specific PCR test for each of these SNP. The PCR tests made it possible to discriminate between the breeds of chickens to identify products from these three breeds. This PCR method provides an efficient method for the routine analysis and verification of certified chicken products.


  1. Calvo, J. H., C. Rodellar, P. Zaragoza and R. Osta. 2002. Beef- and bovine-derived material identification in processed and unprocessed food and feed by PCR amplification. J. Agric. Food Chem. 50:5262-5264
  2. Carrion, D., A. Day, G. Evans, T. Mitsuhashi, A. Archibald, C. Haley, L. Andersson and G. Plastow. 2003. The use of MC1R and KIT genotypes for breed characterisation. Arch. Zootec. 52:237-244
  3. De Marchi, M., C. Dalvit, C. Targhetta and M. Cassandro. 2006. Assessing genetic diversity in indigenous Veneto chicken breeds using AFLP markers. Anim. Genet. 37:101-105
  4. Herbergs, J., M. Siwek, R. P. M. A. Crooijmans, J. J. Van der Poel, and M. A. M. Groenen. 1999. Multicolour fluorescent detection and mapping of AFLP markers in chicken (gallus domesticus). Anim. Genet. 30:274-285
  5. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York
  6. SanCristobal, M., C. Chevalet, J. Peleman, H. Heuven, B. Brugmans, M. van Schriek, R. Joosten, A. P. Rattink, B. Harlizius, M. A. M. Groenen, Y. Amigues, M.-Y. Boscher, G. Russell, A. Law, R. Davoli, V. Russo, C. Desautes, L. Alderson, E. Fimland, M. Bagga, J. V. Delgado, J. L. Vega-Pla, A. M. Martinez, M. Ramos, P. Glodek, J. N. Meyer, G. Gandini, D. Matassino, K. Siggens, G. Laval, A. Archibald, D. Milan, K. Hammond, R. Cardellino, C. Haley and G. Plastow. 2006. Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers. Anim. Genet. 37:232-238礙돀잖⨀塨?⨀ꂐ잖⨀儙돐잖⨀잖⨀잖⨀⤙댐䁽ጄȀ
  7. Wimmers, K., E. Murani, S. Ponsuksili, M. Yerle and K. Schellander. 2002. Detection of quantitative trait loci for carcass traits in the pig by using AFLP. Mamm. Genome 13:206-210
  8. Tartaglia, M., E. Saulle, S. Pestalozza, L. Morelli, G. Antonucci and P. A. Battaglia. 1998. Detection of bovine mitochondrial DNA in ruminant feeds: A molecular approach to test for the presence of bovine-derived materials. J. Food Prot. 61:513-518
  9. Alves, E., C. Castellanos, C. Ovilo, L. silio and C. Rodriguez. 2002. Differentiation of the raw material of the Iberian pig meat industry based on the use of amplified fragment length polymorphism. Meat Sci. 61:157-162
  10. van Haeringen, W. A., M. G. Den Bieman, $\AE$. Lankhorst, H. A. van Lith and L. F. M. van Zutphen. 2002. Application of AFLP markers for QTL mapping in the rabbit. Genome 45:914-921
  11. Negrini, R., E. Milanesi, R. Bozzi, M. Pellecchia and P. Ajmone-Marsan. 2006. Tuscany autochthonous cattle breeds: an original genetic resource investigated by AFLP markers. J. Anim. Breed. Genet. 123:10-16
  12. Alderson, G. L. H. and G. Plastow. 2004. Use of DNA markers to assist with product traceability and pedigree analysis and their role in breed conservation. Anim. Genet. Resour. Inf. 35:1-7
  13. Bradeen, J. M. and P. W. Simon. 1998. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor. App. Genet. 97:960-967
  14. Fumiere, O., M. Dubois, D. Gregoire, A. Thewis and G. Berben. 2003. Identification on Commercialized products of AFLP markers able to discriminate slow- from fast-growing chicken strains. J. Agric. Food Chem. 51:1115-1119
  15. Foulley, J. L., M. G. M. van Schriek, L. Alderson, Y. Amigues, M. Bagga, M. Y. Boscher, B. Brugmans, R. Cardellino, R. Davoli, J. V. Delgado, E. Fimland, G. C. Gandini, P. Glodek, M. A. M. Groenen, K. Hammond, B. Harlizius, H. Heuven, R. Joosten, A. M. Martinez, D. Matassino, J. N. Meyer, J. Peleman, A. M. Ramos, A. P. Rattink, V. Russo, K. W. Siggens, J. L. Vega-Pla and L. Ollivier. 2006. Genetic diversity analysis using lowly polymorphic dominant markers: The example of AFLP in pigs. J. Hered. 97:244-252Ā뢾ヨ⨀좶ヨ⨀좼ヨ⨀㐱Ɨ⨀฀ऀ考►Ȁ►Ȁ̀￿￿￿￿惗ヨ⨀Ā
  16. Meyer, R., U. Candrian and J. Luthy. 1994. Detection of pork in heated meat products by the polymerase chain reaction. J. AOAC Int. 77:617-622
  17. Shan, X., T. K. Blake and L. E. Talbert. 1999. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor. Appl. Genet. 98:1072-1078
  18. Hillier, L. W., W. Miller, E. Birney, W. Warren, R. C. Hardison, C. P. Ponting, P. Bork, D. W. Burt, M. A. Groenen, M. E. Delany, J. B. Dodgson, A. T. Chinwalla, P. F. Cliften, S. W. Clifton, K. D. Delehaunty, C. Fronick, R. S. Fulton, T. A. Graves, C. Kremitzki, D. Layman, V. Magrini, J. D. McPherson, T. L. Miner, P. Minx, W. E. Nash, M. N. Nhan, J. O. Nelson, L. G. Oddy, C. S. Pohl, J. Randall-Maher, S. M. Smith, J. W. Wallis, S. P. Yang, M. N. Romanov, C. M. Rondelli, B. Paton, J. Smith, D. Morrice, L. Daniels, H. G. Tempest, L. Robertson, J. S. Masabanda, D. K. Griffin, A. Vignal, V. Fillon, L. Jacobbson, S. Kerje, L. Andersson, R. P. Crooijmans, J. Aerts, J. J. van der Poel, H. Ellegren, R. B. Caldwell, S. J. Hubbard, D. V. Grafham, A. M. Kierzek, S. R. McLaren, I. M. Overton, H. Arakawa, K. J. Beattie, Y. Bezzubov, P. E. Boardman, J. K. Bonfield, M. D. Croning, R. M. Davies, M. D. Francis, S. J. Humphray, C. E. Scott, R. G. Taylor, C. Tickle, W. R. Brown, J. Rogers, J. M. Buerstedde, S. A. Wilson, L. Stubbs, I. Ovcharenko, L. Gordon, S. Lucas, M. M. Miller, H. Inoko, T. Shiina, J. Kaufman, J. Salomonsen, K. Skjoedt, G. K. Wong, J. Wang, B. Liu, J. Wang, J. Yu, H. Yang, M. Nefedov, M. Koriabine, P. J. Dejong, L. Goodstadt, C. Webber, N. J. Dickens, I. Letunic, M. Suyama, D. Torrents, C. von Mering, E. M. Zdobnov, K. Makova, A. Nekrutenko, L. Elnitski, P. Eswara, D. C. King, S. Yang, S. Tyekucheva, A. Radakrishnan, R. S. Harris, F. Chiaromonte, J. Taylor, J. He, M. Rijnkels, S. Griffiths-Jones, A. Ureta-Vidal, M. M. Hoffman, J. Severin, S. M. Searle, A. S. Law, D. Speed, D. Waddington, Z. Cheng, E. Tuzun, E. Eichler, Z. Bao, P. Flicek, D. D. Shteynberg, M. R. Brent, J. M. Bye, E. J. Huckle, S. Chatterji, C. Dewey, L. Pachter, A. Kouranov, Z. Mourelatos, A. G. Hatzigeorgiou, A. H. Paterson, R. Ivarie, M. Brandstrom, E. Axelsson, N. Backstrom, S. Berlin, M. T. Webster, O. Pourquie, A. Reymond, C. Ucla, S. E. Antonarakis, M. Long, J. J. Emerson, E. Betran, I. Dupanloup, H. Kaessmann, A. S. Hinrichs, G. Bejerano, T. S. Furey, R. A. Harte, B. Raney, A. Siepel, W. J. Kent, D. Haussler, E. Eyras, R. Castelo, J. F. Abril, S. Castellano, F. Camara, G. Parra, R. Guigo, G. Bourque, G. Tesler, P. A. Pevzner, A. Smit, L. A. Fulton, E. R. Mardis and R. K. Wilson (International Chicken Genome Sequencing Consortium). 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716
  19. Ovilo, C., M. T. Cervera, C. Castellanos and J. M. Martínez-Zapater. 2000. Characterisation of Iberian pig genotypes using AFLP markers. Anim. Genet. 31:117-122
  20. Ajmone-Marsan, P., R. Negrini, E. Milanesi, R. Bozzi, I. J. Nijman, J. B. Buntjer, A. Valentini and J. A. Lenstra. 2002. Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Anim. Genet. 33:280-286
  21. Gorni, C., J. L. Williams, H. C. M. Heuven, R. Negrini, A. Valentini, M. J. T. van Eijk, D. Waddington, M. Zevenbergen, P. Ajmone Marsan and J. D. Peleman. 2004. Application of AFLP technology to radiation hybrid mapping. Chromosome Res. 12:285-297
  22. Otsen, M., M. den Bieman, M. T. Kuiper, M. Pravenec, V. Kren, T. W. Kurtz, H. J. Jacob, $\AE$. Lankhorst and B. F. M. van Zutphen. 1996. Use of AFLP markers for gene mapping and QTL detection in the rat. Genmics 37:289-294
  23. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414
  24. Ajmone-Marsan, P., R. Negrini, P. Crepaldi, E. Milanesi, C. Gorni, A. Valentini and M. Cicogna. 2001. Assessing genetic diversity in Italian goat populations using AFLP markers. Anim. Genet. 32:281-288
  25. Okumura, N., E. Kobayashi, H. Suzuki, T. Morozumi, N. Hamashita and T. Mitsuhashi. 2000. Breed specific mutations in melanocortin receptor 1 (MC1R) and KIT genes in pigs (in Japanese with English summary). Anim. Sci. J. 71:J222-J234