• Published : 2009.02.28


Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.


  1. D. R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements”, TID-26711-P1, Technical Information Service, U.S. Department of Commerce, Springfield, Virginia (1976)
  2. G. Busker, A. Chroneos, and R. W. Grimes, “Solution Mechanisms for Dopant Oxides in Yttria”, J. Am. Ceram. Soc., 82, 1553 (1999)
  3. N. Metropolis and S. Ulam, “The Monte Carlo Method”, J. Amer. Statistical Assoc., 44, 335 (1949)
  4. J. Lepinoux and L. P. Kubin, “The Dynamic Organization of Dislocation Structures: A Simulation”, Scripta Metall. 21, 833 (1987)
  5. J. P. Hirth, M. Rhee, and H. M. Zbib, “On Dislocation Reactions and Hardening Mechanisms in 3D Dislocation Dynamics”, J. Computer-Aided Materials Design 3, 164 (1996)
  6. F. P. Incopera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc, New York (1996)
  7. R. B. Bird, Transport Phenomena, John Wiley & Sons, Inc, New York (2002)
  8. R. B. Phillips, Crystals, Defects, and Microstructures, Cambridge University Press, Cambridge (2001)
  9. M. Stan, J. C. Ramirez, P. Cristea, S. Y. Hu, C. Deo, B. P. Uberuaga, S. Srivilliputhur, S. P. Rudin, and J. M. Wills., “Models and simulations of nuclear fuel materials properties”, J. Alloys Comp., 444–445, 415 (2007)
  10. J. Belle (Ed), “Uranium Oxide: Properties and Nuclear Applications”, Naval Reactors, Division of Reactor Development Report, USAEC, (1961)
  11. D.G. Kolman, Y.S. Park, M. Stan, R.J. Hanrahan Jr., D.P. Butt, "An Assessment of the Validity of Cerium Oxide as a Surrogate for Plutonium Oxide Gallium Removal Studies", LA-UR-99-0491, Los Alamos National Laboratory (1999)
  12. P. Cristea, M. Stan, and J. C. Ramirez, 'Point Defects and Oxygen Diffusion in Fluorite Type Oxides', J. Optoelectr. Adv. Mater, 9, 1750 (2007)
  13. J. Janek and H. Timm, “Thermal Diffusion and Soret Effect in (U,Me)O2+x: The Heat of Transport of Oxygen”, J. Nucl. Mater., 255, 116 (1998)
  14. FRAPCON simulation code,
  17. http:/
  18. V.L. Ginzburg and L.D. Landau, “On the theory of superconductivity”, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
  19. M. I. Baskes and M. Stan, “An Atomistic Study of Solid- Liquid Interfaces and Phase Equilibrium in Binary Systems”, Metall. Mater. Trans. A, 34, 435 (2003)
  20. M. Stan and B. Reardon, “A Bayesian Approach to Evaluating the Uncertainty of Thermodynamic Data and Phase Diagrams”, CALPHAD, 27, 319 (2003)
  21. M. F. Lyons, B. Weidenba, R.F. Boyle, and T. J. Pashos, “Post-Irradiation Examination of High-Burnup Molten UO2 Fuel Rods”, Trans. Amer. Nucl. Soc., 8, 42 (1965)
  22. United States Nuclear Regulatory Commission, Emergency Preparedness, images/fuel-pellet- assembly.jpg
  23. M. S. Daw and M. I. Baskes, “Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys”, Phys. Rev. B 29, 6443 (1984)
  24. A. F. Voter, F. Montalenti, and T. C. Germann, “Extending the Time Scale in Atomistic Simulations of Materials”, Ann. Rev. Mater. Res., 32, 321 (2002).
  25. N. Sounders and A. P. Miodownik, CALPHAD, Elsevier Science Limited, New York (1998)
  26. http:/
  27. A. P. Sutton, Electronic Structure of Materials, Oxford University Press, Oxford (1993)
  28. W. Frank and C. Elsasser and M. Fahnle, “Ab initio Force- Constant Method for Phonon Dispersions in Alkali Metals”, Phys. Rev. Lett., 74, 1791 (1995)
  29. G. D. Billing and K. V. Mikkelsen, “Introduction to Molecular Dynamics and Chemical Kinetics”, John Wiley & Sons, Inc, New York, 1996
  30. K. Kunc and R. M. Martin, “Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties”, Phys. Rev. Lett., 48, 406 (1982)
  31. J.W. Cahn. “On Spinodal Decomposition”, Acta Metall., 9, 795 (1961)
  32. T. B. Lindemer and T. M. Besmann, “Chemical Thermodynamic Representation of UO2${\pm}$x”, J. Nucl. Mater., 130, 473 (1985)
  33. D. Frenkel and B. Smit, Understanding Molecular Dynamics, Academic Press, San Diego (2002)
  34. A Karma. “Phase-Field Formulation for Quantitative Modeling of Alloy Solidification”, Phys. Rev. Lett., 87, 115701 (2001)
  35. V. Bulatov, M. Tang, M. and H. M. Zbib, “Crystal plasticity from dislocation dynamics”, Materials Research Society Bulletin 26, 191 (2001)
  36. L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, New York (1970)
  37. J. Singleton, Band Theory and Electronic Properties of Solids, Oxford University Press, Oxford (2001)
  38. S. S. Hecker and M. Stan, “Properties of Plutonium and its Alloys for Use as Fast Reactor Fuels” J. Nucl. Mater. 383, 112 (2008)
  39. J. C. Ramirez, M. Stan, and P. Cristea, “Simulations of Heat and Oxygen Diffusion in UO2 Nuclear Fuel Rods”, J. Nucl. Mater., 359, 174 (2006)
  40. N.H. March, Electron Density Theory of Atoms and Molecules, Academic Press, New York (1992)
  41. M. I. Baskes, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities“, Phys. Rev. B 46, 2727 (1992)
  42. M. Stan, “Materials Models and Simulations in Support of Nuclear Fuels Development”, LA-UR-05-5652, Los Alamos National Laboratory (2005)
  43. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, Inc, New York (2001)
  44. S. I. Sandler, Chemical Engineering and Thermodynamics, John Wiley & Sons, Inc, New York (1999)
  45. J. K. Fink, “Thermophysical Properties of Uranium Dioxide”, J. Nucl. Mater., 279, 1 (2000)
  46. S.Y. Hu, M. I. Baskes, M. Stan and C. Tome, “Phase-field Modeling of Micro-void Evolution under Elastic-plastic Deformation”, Appl. Phys. Let., 90, 81921 (2007)
  47. M. Stan and P. Cristea, “Defects and Oxygen Diffusion in PuO2-x”, J. Nucl. Mater. 344, 213 (2005)
  49. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, New York (1998)
  50. J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, LLC, Boca Raton (2001)
  51. C. Korte, J. Janek, and H. Timm, “Transport Processes in Temperature Gradients: Thermal Diffusion and Soret Effect in Crystalline Solids”, Solid State Ionics, 101/103, 465 (1997)
  52. K. C. Kim and D. R. Olander, “Oxygen Diffusion in UO2- x “, J. Nucl. Mater., 102 192 (1981)
  53. A. F. Voter, “Introduction to the Kinetic Monte Carlo Method”, in Radiation Effects in Solids, K. E. Sickafus and E. A. Kotomin (Editors), Springer, NATO Publishing Unit, Dordrecht, The Netherlands (2005)
  54. E. Van der Giessen and A. Needleman, A., “Discrete Dislocation Plasticity: A Simple Planar Model”, Mater. Sci. Eng. 3, 689 (1995)
  56. W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo Simulations of Solids”, Rev. Mod. Phys. 73, 33 (2005)
  57. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. A, 140, 1133 (1965)
  60. M. Abramowski, “Atomistic Simulations of the Uranium/ Oxygen System”, PhD Thesis, Imperial College (2001)
  61. R. M. Martin, Electronic Structure, Cambridge Univ. Press, New York (2004)
  62. H. Y. Wang and R. LeSar, “O(N) Algorithm for Dislocation Dynamics”, Philosophical Magazine A, 71, 149 (1995)
  63. M. E. Glicksman, Diffusion in Solids, John Wiley & Sons, Inc, New York (2000)
  64. M. I. Baskes, K. Muralidharan, M. Stan, S. M. Valone, and F. J. Cherne, “Using the Modified Embedded-Atom Method to Calculate the Properties of Pu-Ga Alloys”, JOM, 55, 41 (2003)
  65. M. Stan, T.J. Armstrong, D.P. Butt, T.C. Wallace Sr., Y.S. Park, C.L. Haertling, T. Hartmann, R.J.Hanrahan Jr., “Stability of the Perovskite Compounds in the Ce-Ga-O and Pu-Ga-O Systems”, J. Am. Ceram. Soc., 85, 2811 (2002)
  66. A. R. Allnatt and A. B. Liliard, Atomic Transport in Solids, University Press, Cambridge, New York, 1993

Cited by

  1. Development of the Fission Product Release Analysis Code COPA-FPREL vol.170, pp.1, 2010,
  2. Modeling and simulation of nuclear fuel materials vol.3, pp.10, 2010,
  3. Multi-Scale Modeling of Interstitial Dislocation Loop Growth in Irradiated Materials vol.1444, pp.1946-4274, 2012,
  4. Atomistic modeling of the self-diffusion in γ-U and γ-U-Mo vol.116, pp.5, 2015,
  5. Average structure and local configuration of excess oxygen in UO2+x vol.4, pp.1, 2015,
  6. Atomistic simulation of the process of defect formation in uranium dioxide during fission fragments flying through vol.53, pp.1, 2015,
  7. First-principles based computational study on nucleation and growth mechanisms of U on Mo(110) surface solvated in an eutectic LiCl-KCl molten salt vol.40, pp.10, 2016,
  8. Analysis of the Range of Applicability of Thermodynamic Calculations in the Engineering of Nitride Fuel Elements vol.80, pp.8, 2017,