DOI QR코드

DOI QR Code

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Victoria, Maximo (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Hoffelner, Wolfgang (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute)
  • Published : 2009.02.28

Abstract

The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

References

  1. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, S. Ukai, MRS Bulletin 34, 20 (2009) https://doi.org/10.1557/mrs2009.8
  2. ASME Boiler & Pressure Vessel Code, Section III, ASME BPVC (2007)
  3. M. Samaras, M. Victoria, W. Hoffelner, ‘E.U. Advanced Materials Modeling Perspectives’, accepted J. Nucl. Mater. (2008)
  4. R. Iglesias, M. Samaras, A. C. Uldry, M. Victoria, W. Hoffelner, work in preparation
  5. R. H. Heffner, E. D. Bauer, B. Chung, M. J. Fluss, W. Higemoto, T. U. Ito, D. E. MacLaughlin, L. A. Morales, G. D. Morris, K. Ohishi, J. L. Sarrao, L.Shu, Proc. of 5th Int. Symposium on ASR-WYP-2005-Advances in the Physics and Chemistry of Actinide Compounds-J. Phys. Soc. Jpn. 75, 14 (2006) https://doi.org/10.1143/JPSJS.75S.14
  6. M. Fluss, S. Mccall’ Talk presented at Fall MRS 2008, Symposium R, ‘Experimental Determination of Metal Fuel Point Defect Parameters’, www.mrs.org/s_mrs/doc.asp?CID =16988&DID=217327
  7. M. Samaras, PM. Derlet, H. Van Swygenhoven, M. Victoria, J. Nucl. Mater. 351, 47 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.030
  8. C.S. Becquart, Nucl. Inst. Meth. Phys. B 228, 111 (2005) https://doi.org/10.1016/j.nimb.2004.10.030
  9. Z. Lu, R.G. Faulkner, N. Sakaguchi, H. Kinoshita, H. Takahashi, P.E.J. Flewitt, J. Nucl. Mater. 329-333 1017 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.127
  10. A.D. Brailsford, R. Bullough, J. Nucl. Mater. 44, 121 (1972) https://doi.org/10.1016/0022-3115(72)90091-8
  11. A A Semenov, C H Woo, Appl. Phys. A 69, 445 (1999) https://doi.org/10.1007/s003390051030
  12. B.D. Patterson, et al., Swiss Physical Society Newsletter, 23, 16 (2003)
  13. J. F. van der Veen, Synchrotron Radiation Instrumentation, 3-9 705, (2004)
  14. P. de Almeida, M. Victoria, Solid State Commun. 125 195 (2003) https://doi.org/10.1016/S0038-1098(02)00722-6
  15. http://www.cscs.ch/
  16. M. Samaras, W. Hoffelner, M. Victoria, J. of Nucl. Mater. 371, 28 (2007); M. Samaras, W. Hoffelner, C.-C. Fu, M. Guttmann, R. E. Stoller, ICAPP 2007 proceedings; Revue G$\acute{e}$n$\acute{e}$rale Nucl$\acute{e}$aire, SFEN, France https://doi.org/10.1016/j.jnucmat.2007.05.026
  17. B. Bak$\acute{o}$, M. Samaras, D. Weygand, J. Chen, P. Gumbsch, W. Hoffelner J. Nucl. Mater., in press (2009)
  18. N. K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Corros. Sci. 50, 1701 (2008) https://doi.org/10.1016/j.corsci.2008.01.032
  19. P. Blair, thesis, http://library.epfl.ch/theses/?nr=4084
  20. C. Borca, et al, unpublished
  21. R. Sch$\ddot{a}$ublin, Z.L. Chiu, J. Nucl. Mater. 362, 152 (2007) https://doi.org/10.1016/j.jnucmat.2007.01.187
  22. M. J. Caturla, C. J. Ortiz, J. of Nucl. Mater. 141, 362 (2007) https://doi.org/10.1016/j.jnucmat.2007.01.017
  23. G.E. Murch, Diff. Defect Data 32 9
  24. http://www.gen-4.org/PDFs/GenIVRoadmap.pdf
  25. www.fp6perfect.net/perfect
  26. A. Froideval, R. Iglesias, M. Samaras, S. Schuppler, P. Nagel, D. Grolimund, M. Victoria, W. Hoffelner, Phys Rev Lett. 99, 237201 (2007) https://doi.org/10.1103/PhysRevLett.99.237201
  27. M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002) https://doi.org/10.1103/PhysRevLett.88.125505
  28. F. Gao, et al.,, J. of Nucl. Mater. 133, 351 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.015
  29. J. Chen, M.A. Pouchon, A. Kimura, P. Jung, W. Hoffelner, J. Nucl. Mater. accepted https://doi.org/10.1016/j.jnucmat.2008.12.081
  30. M. Victoria, et al., O1B-I-28, SOFT, Fusion Engineering and Design, 82, 2413 (2007) https://doi.org/10.1016/j.fusengdes.2007.05.079
  31. G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008) https://doi.org/10.1146/annurev.matsci.38.060407.130315
  32. C. C . Fu, F. Willaime, C. R. Physique 9, 335 (2008) https://doi.org/10.1016/j.crhy.2007.09.018
  33. D. Nguyen, et al., Phys. Rev. B (2006) 73, 020101 (2006) https://doi.org/10.1103/PhysRevB.73.020101
  34. K. Govers, S. Lemehov, M. Verwerft, J. Nucl. Mater. 374, 461(2008) https://doi.org/10.1016/j.jnucmat.2007.10.005
  35. W. Hoffelner, A. Froideval, M.A. Pouchon, J. Chen, M. Samaras, Metall. Mater. Trans. A, 10.1007/s11661-007- 9326-z https://doi.org/10.1007/s11661-007-9326-z
  36. T.P.C. Klaver, R. Drautz, M. W. Finnis, Phys. Rev. B 74, 094435 (2006) https://doi.org/10.1103/PhysRevB.74.094435
  37. B. Bak$\acute{o}$, M. Zaiser, D. Weygand, M. Samaras, W. Hoffelner, J. Nucl. Mater., in press (2009)
  38. A. Kohyama, GFR Steering Committee Meeting, Idaho May $21^{st}$, 2003
  39. A. Kohyamaet. al., J. Nucl. Mat. 138, 233, (1996) https://doi.org/10.1016/S0022-3115(96)00327-3
  40. Abe H., and Kuramoto E., J. Nucl. Mater. 209, 271 (1999) https://doi.org/10.1016/S0022-3115(98)00741-7
  41. D. Cole et al, Sic Tech. Wld. Join. 5, 81 (2000)
  42. David C. Parfitt, Robin W. Grimes, J. Nucl. Mater. 381 216 (2008) https://doi.org/10.1016/j.jnucmat.2008.06.038
  43. N. Gao, M. Samaras, P. M. Derlet, H. Van Swygenhoven, M. Victoria, W. Hoffelner, unpublished
  44. R. G. Faulkner, Encyclopedia of Materials: Science and Technology, 829 (2008)
  45. N. Sakaguchi, S. Watanabe, H. Takahashi, R. G. Faulkner, J. Nucl. Mater. 329-333, 1166 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.268
  46. L. Van Brutzel, P. Crocombette, MRS Proceedings 358, n$\textdegree$2-3, 209 (2006)
  47. www.f-bridge.eu/; www.f-bridge.eu/index.php/Papers/FBridge-Publications.html
  48. G. Martin, P. Bellon, R. Physique 9, 323 (2008) https://doi.org/10.1016/j.crhy.2007.11.006
  49. G. Martin, S. Maillard, L. Van Brutzel, P. Garcia, B. Dorado, C. Valot, J. Nucl. Mater. (2009) https://doi.org/10.1016/j.jnucmat.2008.12.010
  50. Y. Yun, O. Eriksson, P. M. Oppeneer, J. Nucl. Mater. accepted (2008) https://doi.org/10.1016/j.jnucmat.2008.10.036
  51. http://homepages.ed.ac.uk/graeme/moldy/moldy.html
  52. T. P. C. Klaver, P. Olsson, M. W. Finnis, Phys. Rev. B 76, 214110 (2007) https://doi.org/10.1103/PhysRevB.76.214110
  53. U. K$\ddot{o}$bler, A. Hoser, R.M. Mueller, K. Fischer, Journal of Magnetism and Magnetic Materials 315 12(2007) https://doi.org/10.1016/j.jmmm.2007.02.056
  54. M. Samaras, W. Hoffelner and M. Victoria, submitted to MRS proceedings (2008)
  55. S. Watanabe, Y. Takamatsu, N. Sakaguchi, H. Takahashi, J. Nucl. Mater. 283-287 152 (2000) https://doi.org/10.1016/S0022-3115(00)00204-X
  56. M. Michael P. Surh, J.B. Sturgeon , W.G. Wolfer, J. Nucl. Mater. 328, 107 (2004) https://doi.org/10.1016/j.jnucmat.2004.03.005
  57. M. Iannuzzi, M. Krack, M. Zimmermann, M. Samaras, unpublished
  58. P. Blair, A. Romano, Ch. Hellwig, R. Chawla, J. Nucl. Mater., 350, 232 (2006) https://doi.org/10.1016/j.jnucmat.2006.01.006
  59. L. Shuller, R. C. Ewing, U. Becker, Mater. Res. Soc. Symp. Proc. Vol. 985 0985-NN12-03 (2007)
  60. M. Katayama, J. Adachi, K. Kurosaki, M. Uno, S. Miwa, M. Osaka, K. Tanaka, S. Yamanaka, Mater. Res. Soc. Symp. Proc. Vol. 1043 1043-T09-06 (2008)
  61. J. Lemaitre, J.-L. Chaboche Eds., Mechanics of Solid Materials, Cambridge University Press ISBN 0521477581, 9780521477581 (1994)
  62. M. A. Pouchon, J. Chen, M. Döbeli, W. Hoffelner, J. Nucl. Mater. 352, 57 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.070
  63. http://www.nea.fr/html/science/struct_mater/Presentations/CARRE.pdf
  64. M. Samaras, W. Hoffelner and M. Victoria, J. of Nucl. Mater. 352, 50-56, (2006) https://doi.org/10.1016/j.jnucmat.2006.02.041
  65. M. Law, W. Payten, K. Snowden, International Journal of Pressure Vessels and Piping 79, 847 (2002) https://doi.org/10.1016/S0308-0161(02)00100-X
  66. L. Van Brutzel, E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008) https://doi.org/10.1016/j.jnucmat.2008.04.010
  67. J. Chen, unpublished
  68. C. Domain, C. S. Becquart, J. Foct, Phys. Rev. B 69, 144112 (2004) https://doi.org/10.1103/PhysRevB.69.144112
  69. A.D. Brailsford, J. Nucl. Mater. 118 303 (1983) https://doi.org/10.1016/0022-3115(83)90238-6
  70. B. Bak$\acute{o}$, D. Weygand, M. Samaras, J. Chen, M. Pouchon, P. Gumbsch, W. Hoffelner, Phil. Mag. A 87 3645 (2007) https://doi.org/10.1080/14786430701383085
  71. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 376 66 (2008) https://doi.org/10.1016/j.jnucmat.2008.01.023
  72. C. C. Fu, F. Willaime, P. Ordejon, Phys. Rev. Lett. 92, 175503 (2004) https://doi.org/10.1103/PhysRevLett.92.175503
  73. C. Ortiz, M. J. Caturla, C. C. Fu, F. Willaime, Phys. Rev. B 75, 100102(R) (2007) https://doi.org/10.1103/PhysRevB.75.100102
  74. A. Kohyama, Y. Katoh, L.L. Snead, R.H. Jones, www.iaea. org/programmes/ripc/physics/fec2000/pdf/ftp1_06.pdf
  75. Osetsky Yu N. ., Mater. Res. Soc. Symp. Proc. 59, 527 (1998) https://doi.org/10.1557/PROC-527-59
  76. A A Semenov, C H Woo, J. Nucl. Mater. 323, 192 (2003) https://doi.org/10.1016/j.jnucmat.2003.08.004
  77. W. Hoffelner, ASME tasks on New Generation Nuclear Plant (NGNP) 2008, unpublished
  78. B. D. Wirth, M.J. Caturia, T. Diaz de la Rubia, T. Khraishi, H. Zbib, Nucl. Instru. Meth. Phys. B 180, 23 (2001) https://doi.org/10.1016/S0168-583X(01)00392-5
  79. P. Olsson, I. A. Abrikosov, L. Vitos, J. Wallenius, J. Nucl. Mat. 321, 84 (2003) https://doi.org/10.1016/S0022-3115(03)00207-1
  80. C.C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Nature Mater. 4, 68 (2005) https://doi.org/10.1038/nmat1286
  81. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002) https://doi.org/10.1016/S0022-3115(02)01043-7
  82. C.S. Becquart, A. Souidi, C. Domain, M. Hou, L. Malerba, R.E. Stoller, J. Nucl. Mater. 351, 39 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.022
  83. K. Govers, S. Lemehov, M. Hou, M. Verwerft , J. Nucl. Mater. 366 161 (2007) https://doi.org/10.1016/j.jnucmat.2006.12.070
  84. RCC-MR code, AFCEN (2007)
  85. M. Samaras, M. Victoria, Mat. Today 11, 54 (2008) https://doi.org/10.1016/S1369-7021(08)70253-0
  86. Hj. Matzke, M. Kinoshita, J. Nucl. Mater. 247, 108 (1997) https://doi.org/10.1016/S0022-3115(97)00081-0
  87. www-ist.cea.fr/publicea/exl-doc/200700001902.doc
  88. http://www.nea.fr/html/science/struct_mater/Presentations/ZINKLE.pdf
  89. N. Soneda, T. Diaz de la Rubia, Phil. Mag. A 78, 995 (1998) https://doi.org/10.1080/01418619808239970
  90. C.S. Becquart, J.M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H. Nguyen, Comp. Mater. Sci. 40,119 (2007) https://doi.org/10.1016/j.commatsci.2006.11.005
  91. Garner F. A., et al., J. Nucl. Mat. 123, 276, (2000) https://doi.org/10.1016/S0022-3115(99)00225-1
  92. B. Bak$\acute{o}$, D. Weygand, M. Samaras, W. Hoffelner, and M. Zaiser, Phys. Rev. B. 78, 144104 (2008) https://doi.org/10.1103/PhysRevB.78.144104
  93. E. N. Campitelli, P. Spätig, R. Bonad$\acute{e}$, W. Hoffelner, M Victoria, J. Nucl. Mater. 335, 336 (2004) https://doi.org/10.1016/j.jnucmat.2004.07.052
  94. J. Wunder, PhD thesis ‘Mikrostrukturelle Beschreibung der Warmfestigkeit ferritischer Superlegierungen’, Friedrich- Alexander Universit$\ddot{a}$t, Erlangen-N$\ddot{u}$rnberg, Germany, (1994)
  95. P. Erhart, et al.,, Phys Rev B 77, 134206 (2008) https://doi.org/10.1103/PhysRevB.77.134206
  96. Fatigue at elevated temperatures, A. E. Carden, A. J. McEvJily, C. H. Wells, editors, ASTM Special Technical Publication, 520, AMERICAN SOCIETY FOR TESTING AND MATERIALS, (1973)
  97. C. C. Fu, F. Willaime, Phys. Rev. B 72, 064117 (2005) https://doi.org/10.1103/PhysRevB.72.064117
  98. M. Stan, J.C. Ramirez, P. Cristea, S.Y. Hu, C. Deoa, B.P. Uberuaga, S. Srivilliputhur, S.P. Rudin, J.M. Wills, Journal of Alloys and Compounds, 444-445, 415 (2007) https://doi.org/10.1016/j.jallcom.2007.01.102
  99. W. Hoffelner, M. Pouchon, J. Chen, TMS Letters Issue 3, 81 (2005)

Cited by

  1. Damage assessment in structural metallic materials for advanced nuclear plants vol.45, pp.9, 2010, https://doi.org/10.1007/s10853-010-4236-7
  2. Materials Databases and Knowledge Management for Advanced Nuclear Technologies vol.133, pp.1, 2011, https://doi.org/10.1115/1.4002262
  3. A Cluster Dynamics Model For Accumulation Of Helium In Tungsten Under Helium Ions And Neutron Irradiation vol.11, pp.05, 2012, https://doi.org/10.4208/cicp.030311.090611a
  4. AN IMPROVED CLUSTER DYNAMICS MODEL FOR HYDROGEN RETENTION IN TUNGSTEN vol.23, pp.06, 2012, https://doi.org/10.1142/S0129183112500428
  5. Effect of nanostructure on radiation tolerance and deuterium retention in tungsten vol.122, pp.4, 2017, https://doi.org/10.1063/1.4996096