• Samaras, Maria (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Victoria, Maximo (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Hoffelner, Wolfgang (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute)
  • Published : 2009.02.28


The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.


  1. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, S. Ukai, MRS Bulletin 34, 20 (2009)
  2. ASME Boiler & Pressure Vessel Code, Section III, ASME BPVC (2007)
  3. M. Samaras, M. Victoria, W. Hoffelner, ‘E.U. Advanced Materials Modeling Perspectives’, accepted J. Nucl. Mater. (2008)
  4. R. Iglesias, M. Samaras, A. C. Uldry, M. Victoria, W. Hoffelner, work in preparation
  5. R. H. Heffner, E. D. Bauer, B. Chung, M. J. Fluss, W. Higemoto, T. U. Ito, D. E. MacLaughlin, L. A. Morales, G. D. Morris, K. Ohishi, J. L. Sarrao, L.Shu, Proc. of 5th Int. Symposium on ASR-WYP-2005-Advances in the Physics and Chemistry of Actinide Compounds-J. Phys. Soc. Jpn. 75, 14 (2006)
  6. M. Fluss, S. Mccall’ Talk presented at Fall MRS 2008, Symposium R, ‘Experimental Determination of Metal Fuel Point Defect Parameters’, =16988&DID=217327
  7. M. Samaras, PM. Derlet, H. Van Swygenhoven, M. Victoria, J. Nucl. Mater. 351, 47 (2006)
  8. C.S. Becquart, Nucl. Inst. Meth. Phys. B 228, 111 (2005)
  9. Z. Lu, R.G. Faulkner, N. Sakaguchi, H. Kinoshita, H. Takahashi, P.E.J. Flewitt, J. Nucl. Mater. 329-333 1017 (2004)
  10. A.D. Brailsford, R. Bullough, J. Nucl. Mater. 44, 121 (1972)
  11. A A Semenov, C H Woo, Appl. Phys. A 69, 445 (1999)
  12. B.D. Patterson, et al., Swiss Physical Society Newsletter, 23, 16 (2003)
  13. J. F. van der Veen, Synchrotron Radiation Instrumentation, 3-9 705, (2004)
  14. P. de Almeida, M. Victoria, Solid State Commun. 125 195 (2003)
  16. M. Samaras, W. Hoffelner, M. Victoria, J. of Nucl. Mater. 371, 28 (2007); M. Samaras, W. Hoffelner, C.-C. Fu, M. Guttmann, R. E. Stoller, ICAPP 2007 proceedings; Revue G$\acute{e}$n$\acute{e}$rale Nucl$\acute{e}$aire, SFEN, France
  17. B. Bak$\acute{o}$, M. Samaras, D. Weygand, J. Chen, P. Gumbsch, W. Hoffelner J. Nucl. Mater., in press (2009)
  18. N. K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Corros. Sci. 50, 1701 (2008)
  19. P. Blair, thesis,
  20. C. Borca, et al, unpublished
  21. R. Sch$\ddot{a}$ublin, Z.L. Chiu, J. Nucl. Mater. 362, 152 (2007)
  22. M. J. Caturla, C. J. Ortiz, J. of Nucl. Mater. 141, 362 (2007)
  23. G.E. Murch, Diff. Defect Data 32 9
  26. A. Froideval, R. Iglesias, M. Samaras, S. Schuppler, P. Nagel, D. Grolimund, M. Victoria, W. Hoffelner, Phys Rev Lett. 99, 237201 (2007)
  27. M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002)
  28. F. Gao, et al.,, J. of Nucl. Mater. 133, 351 (2006)
  29. J. Chen, M.A. Pouchon, A. Kimura, P. Jung, W. Hoffelner, J. Nucl. Mater. accepted
  30. M. Victoria, et al., O1B-I-28, SOFT, Fusion Engineering and Design, 82, 2413 (2007)
  31. G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008)
  32. C. C . Fu, F. Willaime, C. R. Physique 9, 335 (2008)
  33. D. Nguyen, et al., Phys. Rev. B (2006) 73, 020101 (2006)
  34. K. Govers, S. Lemehov, M. Verwerft, J. Nucl. Mater. 374, 461(2008)
  35. W. Hoffelner, A. Froideval, M.A. Pouchon, J. Chen, M. Samaras, Metall. Mater. Trans. A, 10.1007/s11661-007- 9326-z
  36. T.P.C. Klaver, R. Drautz, M. W. Finnis, Phys. Rev. B 74, 094435 (2006)
  37. B. Bak$\acute{o}$, M. Zaiser, D. Weygand, M. Samaras, W. Hoffelner, J. Nucl. Mater., in press (2009)
  38. A. Kohyama, GFR Steering Committee Meeting, Idaho May $21^{st}$, 2003
  39. A. Kohyamaet. al., J. Nucl. Mat. 138, 233, (1996)
  40. Abe H., and Kuramoto E., J. Nucl. Mater. 209, 271 (1999)
  41. D. Cole et al, Sic Tech. Wld. Join. 5, 81 (2000)
  42. David C. Parfitt, Robin W. Grimes, J. Nucl. Mater. 381 216 (2008)
  43. N. Gao, M. Samaras, P. M. Derlet, H. Van Swygenhoven, M. Victoria, W. Hoffelner, unpublished
  44. R. G. Faulkner, Encyclopedia of Materials: Science and Technology, 829 (2008)
  45. N. Sakaguchi, S. Watanabe, H. Takahashi, R. G. Faulkner, J. Nucl. Mater. 329-333, 1166 (2004)
  46. L. Van Brutzel, P. Crocombette, MRS Proceedings 358, n$\textdegree$2-3, 209 (2006)
  48. G. Martin, P. Bellon, R. Physique 9, 323 (2008)
  49. G. Martin, S. Maillard, L. Van Brutzel, P. Garcia, B. Dorado, C. Valot, J. Nucl. Mater. (2009)
  50. Y. Yun, O. Eriksson, P. M. Oppeneer, J. Nucl. Mater. accepted (2008)
  52. T. P. C. Klaver, P. Olsson, M. W. Finnis, Phys. Rev. B 76, 214110 (2007)
  53. U. K$\ddot{o}$bler, A. Hoser, R.M. Mueller, K. Fischer, Journal of Magnetism and Magnetic Materials 315 12(2007)
  54. M. Samaras, W. Hoffelner and M. Victoria, submitted to MRS proceedings (2008)
  55. S. Watanabe, Y. Takamatsu, N. Sakaguchi, H. Takahashi, J. Nucl. Mater. 283-287 152 (2000)
  56. M. Michael P. Surh, J.B. Sturgeon , W.G. Wolfer, J. Nucl. Mater. 328, 107 (2004)
  57. M. Iannuzzi, M. Krack, M. Zimmermann, M. Samaras, unpublished
  58. P. Blair, A. Romano, Ch. Hellwig, R. Chawla, J. Nucl. Mater., 350, 232 (2006)
  59. L. Shuller, R. C. Ewing, U. Becker, Mater. Res. Soc. Symp. Proc. Vol. 985 0985-NN12-03 (2007)
  60. M. Katayama, J. Adachi, K. Kurosaki, M. Uno, S. Miwa, M. Osaka, K. Tanaka, S. Yamanaka, Mater. Res. Soc. Symp. Proc. Vol. 1043 1043-T09-06 (2008)
  61. J. Lemaitre, J.-L. Chaboche Eds., Mechanics of Solid Materials, Cambridge University Press ISBN 0521477581, 9780521477581 (1994)
  62. M. A. Pouchon, J. Chen, M. Döbeli, W. Hoffelner, J. Nucl. Mater. 352, 57 (2006)
  64. M. Samaras, W. Hoffelner and M. Victoria, J. of Nucl. Mater. 352, 50-56, (2006)
  65. M. Law, W. Payten, K. Snowden, International Journal of Pressure Vessels and Piping 79, 847 (2002)
  66. L. Van Brutzel, E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008)
  67. J. Chen, unpublished
  68. C. Domain, C. S. Becquart, J. Foct, Phys. Rev. B 69, 144112 (2004)
  69. A.D. Brailsford, J. Nucl. Mater. 118 303 (1983)
  70. B. Bak$\acute{o}$, D. Weygand, M. Samaras, J. Chen, M. Pouchon, P. Gumbsch, W. Hoffelner, Phil. Mag. A 87 3645 (2007)
  71. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 376 66 (2008)
  72. C. C. Fu, F. Willaime, P. Ordejon, Phys. Rev. Lett. 92, 175503 (2004)
  73. C. Ortiz, M. J. Caturla, C. C. Fu, F. Willaime, Phys. Rev. B 75, 100102(R) (2007)
  74. A. Kohyama, Y. Katoh, L.L. Snead, R.H. Jones, www.iaea. org/programmes/ripc/physics/fec2000/pdf/ftp1_06.pdf
  75. Osetsky Yu N. ., Mater. Res. Soc. Symp. Proc. 59, 527 (1998)
  76. A A Semenov, C H Woo, J. Nucl. Mater. 323, 192 (2003)
  77. W. Hoffelner, ASME tasks on New Generation Nuclear Plant (NGNP) 2008, unpublished
  78. B. D. Wirth, M.J. Caturia, T. Diaz de la Rubia, T. Khraishi, H. Zbib, Nucl. Instru. Meth. Phys. B 180, 23 (2001)
  79. P. Olsson, I. A. Abrikosov, L. Vitos, J. Wallenius, J. Nucl. Mat. 321, 84 (2003)
  80. C.C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Nature Mater. 4, 68 (2005)
  81. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002)
  82. C.S. Becquart, A. Souidi, C. Domain, M. Hou, L. Malerba, R.E. Stoller, J. Nucl. Mater. 351, 39 (2006)
  83. K. Govers, S. Lemehov, M. Hou, M. Verwerft , J. Nucl. Mater. 366 161 (2007)
  84. RCC-MR code, AFCEN (2007)
  85. M. Samaras, M. Victoria, Mat. Today 11, 54 (2008)
  86. Hj. Matzke, M. Kinoshita, J. Nucl. Mater. 247, 108 (1997)
  89. N. Soneda, T. Diaz de la Rubia, Phil. Mag. A 78, 995 (1998)
  90. C.S. Becquart, J.M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H. Nguyen, Comp. Mater. Sci. 40,119 (2007)
  91. Garner F. A., et al., J. Nucl. Mat. 123, 276, (2000)
  92. B. Bak$\acute{o}$, D. Weygand, M. Samaras, W. Hoffelner, and M. Zaiser, Phys. Rev. B. 78, 144104 (2008)
  93. E. N. Campitelli, P. Spätig, R. Bonad$\acute{e}$, W. Hoffelner, M Victoria, J. Nucl. Mater. 335, 336 (2004)
  94. J. Wunder, PhD thesis ‘Mikrostrukturelle Beschreibung der Warmfestigkeit ferritischer Superlegierungen’, Friedrich- Alexander Universit$\ddot{a}$t, Erlangen-N$\ddot{u}$rnberg, Germany, (1994)
  95. P. Erhart, et al.,, Phys Rev B 77, 134206 (2008)
  96. Fatigue at elevated temperatures, A. E. Carden, A. J. McEvJily, C. H. Wells, editors, ASTM Special Technical Publication, 520, AMERICAN SOCIETY FOR TESTING AND MATERIALS, (1973)
  97. C. C. Fu, F. Willaime, Phys. Rev. B 72, 064117 (2005)
  98. M. Stan, J.C. Ramirez, P. Cristea, S.Y. Hu, C. Deoa, B.P. Uberuaga, S. Srivilliputhur, S.P. Rudin, J.M. Wills, Journal of Alloys and Compounds, 444-445, 415 (2007)
  99. W. Hoffelner, M. Pouchon, J. Chen, TMS Letters Issue 3, 81 (2005)

Cited by

  1. Damage assessment in structural metallic materials for advanced nuclear plants vol.45, pp.9, 2010,
  2. Materials Databases and Knowledge Management for Advanced Nuclear Technologies vol.133, pp.1, 2011,
  3. A Cluster Dynamics Model For Accumulation Of Helium In Tungsten Under Helium Ions And Neutron Irradiation vol.11, pp.05, 2012,
  5. Effect of nanostructure on radiation tolerance and deuterium retention in tungsten vol.122, pp.4, 2017,