DOI QR코드

DOI QR Code

BI기술을 적용한 약물부작용감시시스템 개발

Development of Adverse Drug Event Surveillance System using BI Technology

  • 이영호 (가천의과학대학교 의료공학부) ;
  • 강운구 (가천의과학대학교 의료공학부) ;
  • 박래웅 (아주대학교 의과대학 의료정보학과)
  • 발행 : 2009.02.28

초록

본 연구에서는 국내 약물부작용감시시스템 연구의 활성화 및 상용화를 목표로 약물부작용 시스템 사례를 분석하고 비즈니스인텔리전스(BI) 기술을 적용하여 약물부작용감시시스템의 기술구조를 제시한다. 최근에는 전자적과정(electronic review)과 수동적 리뷰과정(manual review process)을 병행하는 방법으로 약물부작용을 탐지하는 추세이며, 본 연구에서는 BI 기술중 ETL(Extract, Transform, Loading)을 적용하여 CDW(Clinical DataWarehouse)구축하였다. 부작용 판별 결과 처방의사 701명, 대상 환자는 남자 1,528명, 여자 1,531명으로 기간 내 환자는 총 3059명 이었으며 이중에서 약물부작용으로 의심되는 사례는 전체 318,222건 중에서 약 0.6%에 해당하는 2,085건으로 확인되었다. 이를 신호별로 분류하면 단순유형의 T.Bilirubin> 3mg/dL(부작용 유형-LabR0005)가 전체 2085건에서 548건으로 가장 높았다.

키워드

약물부작용;기술구조;비즈니스인텔리전스;임상데이터웨어하우스

참고문헌

  1. L.T. Kohn, ,J.M. Corrgan, and M.S. Donaldson, " To Err is Human: Building a Safer Health System," Washington, DC: National Academy Press, 1999.
  2. 범희승, 박성희, 최진욱, 김춘배, "임상의사결정지원시스템의 약제부작용 감소 효과에 관한 메타분석", 대한의료정보학회지, 제8권, 제3호,pp.55-60, 2002.
  3. A.K. Jha, G.J. Kuperman, J.M. Teich, L.Lucian, S. Brian , R. Eve , E. Burdick, S.D. Lew , V.V. Martha , and D.W. Bates, "Identifying Adverse Drug Events: Development of a Computer-based Monitor and Comparison with Chart Review and Stimulated Voluntary Report", J Am Med Inform Assoc, Vol.5, Np.3,pp.305-314, 1998. https://doi.org/10.1136/jamia.1998.0050305
  4. H. Benjamin , L. Patrice , R.M. Pulling , D.W. Bates "A computerized method for identifying incidents associated with adverse drug events in outpatients," Int J Med Inform, Vol.6, No.1, pp.21-32, 2001.
  5. D.W. Bates, R.S. Evans, H.J. Murff, P.D. Stetson, L. Pizziferri, and G. Hripcsak "Detecting Adverse Events Using Information Technology," J Am Med Inform Assoc, Vol.10, No.2, pp.115-128, 2003. https://doi.org/10.1197/jamia.M1074
  6. G. James, J.J. Stephen , M. Anderson, T.J. Hunt "Evaluating the Capability of Information Technology to Prevent Adverse Drug Events," A Computer Simulation Approach, J Am Med Inform Assoc, Vol.9, No.5, pp.479-490, 2002. https://doi.org/10.1197/jamia.M1099
  7. A. Kusiak ,S. Shah , "Data Mining and Warehousing in Pharma Industry, In J.Wang(ed.)" Encyclopedia of Data Warehousing and Mining, Idea Group., Hershey, PA, pp.239-244, 2006
  8. 김이경, "Analysis of Inpatient Adverse Drug Events (ADEs) with Retrospective Review of Electronic Medical Records Using ADE Signals", 숙명여자대학교 임상약학대학원, 2004.
  9. 김혜영, "약물부작용 시그날을 이용한 약물부작용에 의한 입원 현황조사", 숙명여자대학교 임상약학대학원, 2004.
  10. H. Benjamin , L. Joshua , R.Jeffrey . " Using computerized data to identify adverse drug events in outpatients," J Am Med Inform Assoc, Vol.8, No.2, pp.254-266, 2001. https://doi.org/10.1136/jamia.2001.0080254
  11. H.J. Murff , V.L. Patel , G. Hripcsak , D. W.Bates, " Detecting adverse events for patient safety research: a review of current methodologies," J Biomed Inform, Vol.36, No.2, pp.131-143, 2003 https://doi.org/10.1016/j.jbi.2003.08.003
  12. P.M. Kilbridge , L. Alexander , A. Ahmad " Implementation of a system for computerized adverse drug event surveillance and intervention at an academic medical center," J Clin Outcomes Manage, Vol.13, No.2, pp.94-100, 2006.
  13. G.J. Kuperman, M.R. Reichley, T.C. Bailey "Using Commercial Knowledge Bases for Clinical Decision Support: Opportunities, Hurdles, and Recommendations," J Am Med Inform Assoc, Vol.13, No.3, pp.369-371, 2006. https://doi.org/10.1197/jamia.M2055
  14. E. Tyugu "Understanding knowledge architectures," Knowledge-Based Systems, Vol.19, No.1, pp.50-56, 2006(3). https://doi.org/10.1016/j.knosys.2005.07.006
  15. U. Yavuz, A.S. Hasiloglu, M.D. Kaya, R. Karcioglu, S. Ersoz, "Developing a marketing decision model using a knowledge-based system," Knowledge-Based Systems, Vol.18, No.(2-3), pp.125-129, 2005(4). https://doi.org/10.1016/j.knosys.2004.12.002

피인용 문헌

  1. Common data model for decision support system of adverse drug reaction to extract knowledge from multi-center database vol.17, pp.1, 2016, https://doi.org/10.1007/s10799-015-0240-6