Vocabulary Recognition Retrieval Optimized System using MLHF Model

MLHF 모델을 적용한 어휘 인식 탐색 최적화 시스템

  • 안찬식 (광운대학교 컴퓨터공학과) ;
  • 오상엽 (경원대학교 IT대학 컴퓨터소프트웨어)
  • Published : 2009.10.31

Abstract

Vocabulary recognition system of Mobile terminal is executed statistical method for vocabulary recognition and used statistical grammar recognition system using N-gram. If limit arithmetic processing capacity in memory of vocabulary to grow then vocabulary recognition algorithm complicated and need a large scale search space and many processing time on account of impossible to process. This study suggest vocabulary recognition optimize using MLHF System. MLHF separate acoustic search and lexical search system using FLaVoR. Acoustic search feature vector of speech signal extract using HMM, lexical search recognition execution using Levenshtein distance algorithm. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%, represent recognition speed of 1.61 second.

References

  1. S. Young, D. Kershaw, J. Odell, D. Ollason, Valtcher, P. Woodland, "The HTK Boos" Cambridge University Engineering Department, 2002.
  2. L. R. Rabiner, B. H. Juang, "Fundamentals of speech recognition", Prentice Hall, 1993.
  3. Kris Demuynck. Tom Laureys, Dirk van Compernolle, and Hugo van Hamme, "FLaVor:a flexible architecture for LVCSR," In EUROSPEECH-2003, pp. 1973-1976, 2003.
  4. K. Demuynck, J. Duchateau, and D. Van Compernolle, "A static lexicon network representation for cross-word context dependent phones," In Proc. EUROSPEECH, Vol.1. pp, 143-146, 1997,
  5. 윤경섭, "휴대용 단말기를 위한 실시간 무선영상 음성 전송 기술." 한국컴퓨터정보학회논문지, 제 14권, 제 4호, 111-117쪽, 2009년 4월.
  6. D. Jurafsky and J. H. Martin, "Speech and Language Processing," Prentice-Hall, 2000.
  7. M. F. Gales, "Model-based techniques for nosie robust speech recognition," Ph. D. dissertation, University of Cambridge, Sept, 1995.
  8. A. S. Manos and V. W. Zue, "A study on out-of-vocabulary word modeling for a segment-based keyword spotting system," Master Thesis, MIT, 1996.
  9. 조영수, 이기정, 김광태, 홍재근, " HMM을 이용한 한국어 음소인식 (Korean Phoneme Recognition using HMM)." 대한전자공학회 학술발표회 논문집, 제 16권, 제 1호, 81-84쪽. 1994년.
  10. 김동주, 김한우, "문맥가중치가 반영된 문장 유사도 척도." 전자공학회 논문지, 제 43권, 제 6호, 496-504쪽, 2006년.
  11. Justin Zobel and Philip Dart "Phonetic String Matching : Lessons from Information Retrival." SIGIR'96, pp. 166-173, 1996.
  12. T. Jitsuhiro, S. Takatoshi. and K. Aikawa. "Rejection of out-of-vocabulary words using phoneme confidence likelihood," ICASSP, pp. 217-220, 1998.
  13. 지진구, 윤성일. "음성을 이용한 하자 검증기 설계 및 구현." 한국컴퓨터정보학회논문지, 제 5권, 제 3호, 91-98쪽, 2000년. 9월.
  14. 김기백, 최종호. "음성인식 기반 컨텐츠 네비게이션 시스템." 한국컴퓨터정보학회지, 제 15권 제 1호, 99-102쪽, 2007년.
  15. L. Rabiner and B. H. Juang, "Fundamentals of Speech Recognition," Prentice-Hall, 1993.
  16. Eiichi Tanaka and Tamotsu Kasai. "Synchronization and Substitution Error-correcting codes for the Levenshtein Metric," IEEE Trans. Information Theory, Vol.IT-22. No.2, pp. 156-176, 1976.
  17. L. R. Bahl, P. V. deSouza. P. S. Gopalakrishnan. D. Nahamoo, and M. Picheny, "A Fast Match for Continuous Speech Recognition Using Allophonic Models," InProc. IEEE ICASSP-92, Vol.1, pp. 17-21. 1992.
  18. S. Ortmanns. A. Eiden, H. Ney. and N. Coenen, "Look-ahead Techniques for Fast Beam Search," InProc. IEEE ICASSP-1997, pp. 1783-1786, 1997.
  19. W. Daelemans, S. Buchholz, and J. Veenstra, "Memorybased shallow parsing," in Proc. CoNLL, pp. 53-60, 1999.
  20. Justin Zobel and Philip Dart "Phonetic String Matching: Lessons from Information Retrieval," SIGIR'96, pp. 166-173, 1996.