DOI QR코드

DOI QR Code

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II)

산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II)

  • Published : 2009.01.31

Abstract

Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.

Keywords

References

  1. Lee K. W., Kim H. K., 2008, A study on the interrelation among organic pollutant indices of non-biodegradable paper wastewater, J. of Korean Soc. of Wat. Sci. and Tech., 16(1), 15-23
  2. Chen G., 2004, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41 https://doi.org/10.1016/j.seppur.2003.10.006
  3. Coast C. R., Botta C. M. R., Espindola E. L. G., Oliva P., 2008, Electrochemical treatrnent of tannery wastewater using $DSA^{\circledR}$ electrodes, J. of Hazard. Mater., 153, 616-627 https://doi.org/10.1016/j.jhazmat.2007.09.005
  4. Malpass G. R. P., Miwa D. W., Machado S. A. S., Olivi P., Motheo A. J., 2006, Oxidation of the atrazine at $DSA^{\circledR}$; electrodes, J. of Hazard. Mater. B, 137, 565-572 https://doi.org/10.1016/j.jhazmat.2006.02.045
  5. Bertazzoli L., Pelegrini R., 2002, Photoelectrochemical discoloration and degradation of organic pollutants in aqueous solutions, Quim. Nova, 25, 477-482 https://doi.org/10.1590/S0100-40422002000300022
  6. Rajkumar D., Kim J. G., 2006, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, J. Hazard. Mater., 136, 203-212 https://doi.org/10.1016/j.jhazmat.2005.11.096
  7. Alves P. D. P., Spagnol M., Tremilinosi G., Andrade A. R. de, 2004, Investigation of the influence of the anode composition of DSA-type electrodes on the electrocatalytic oxidation of phenol in neutral medium, J. Braz. Chem. Soc., 15, 626-634 https://doi.org/10.1590/S0103-50532004000500003
  8. Profeti D., Lassa1i T. A. F., Olivi P., 2006, Preparation of $Ir_{0.3}Sn_{(0.7-x)}Ti_{x}O_2 $electrodes by the polymeric precursor method: characterization and lifetime study, J. Appl. Electrochem., 36, 883-888 https://doi.org/10.1007/s10800-006-9149-4
  9. Yang C. H., Lee C. C., Wen T. C., 2000, Hypochlorite genεration on Ru-Pt binary oxide for treatrnent of dye wastewater, J. Appl. Electrochem., 30, 1043-1051
  10. Vincent F., Morallon E., Quijada C., Vazquez J. L., Aldaz A., Cases F., 1998, Characterization and stability of doped $SnO_2 $ anodes, J. Appl. Electrochem., 607-612 https://doi.org/10.1023/A:1003250118996
  11. 박영식, 2008, 산화제 생성율이 높은 4성분계 촉매성 산화물 전극(DSA)을 이용한 염료의 간접 산화처리, 한국학술진흥재단 2007년도 지역대학우수 과학자, 최종보고서
  12. Feng J., Li X. Y., 2003, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, 2399-2407 https://doi.org/10.1016/S0043-1354(03)00026-5
  13. Feng Y., Cui Y., Logan B., Liu Z., 2008, Performance of Gd-doped Ti-based Sb-$SnO_2 $ anodes for electrochemical destruction of phenol, Chemosphere, 70, 1629-1636 https://doi.org/10.1016/j.chemosphere.2007.07.083
  14. Chen X., Chen G., Yue P. L., 2001, Stable $Ti/IrO_x-Sb_2O_5-SnO_2$anode for $O_2$ evolution with low Ir Content, J. Phys. Chem. B., 105(20), 4623-4628 https://doi.org/10.1021/jp010038d
  15. Correa-Lozano B., Commninellis C., Battisti A. D., 1996, Electrochemical properties of $Ti/SnO_2-Sb_2O_5$ electrodes prepared by the spray pyrolysis technique, J. of Appl. Electrochem., 26, 683-688 https://doi.org/10.1007/BF00241508
  16. Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2001, Electro-activity and life time properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(II), Korean J. Chem. Eng., 39(2), 138-143
  17. Panizza M., Barbucci A., Ricotti R., Cerisola G., 2007, Electrochemical degradation of methylene blue, Sep. and Purifi. Tech., 54, 2007, 382-387 https://doi.org/10.1016/j.seppur.2006.10.010
  18. Nanni I., Polizzi S., Benedetti A., Battisti A. D., 1999, Morphology, microstructure, and electrocatalytic properties of $RuO_2-SnO_2$ thin films, J. Electrochem. Soc., 146, 220-225 https://doi.org/10.1149/1.1391590
  19. Silva L. A., Alves V. A., Silva M. A. P., Trasatti S., Boodts J. F. C., 1997, Morphological, chemical and electrochemical properties of $Ti/(TiO_2+lrO_2) $electrodes, Can. J. Chem., 75, 1483-1493 https://doi.org/10.1139/v97-178
  20. Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2000, Fabrication and material properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(I), Korean J. Chem. Eng., 38(6), 774-782
  21. Yao R. S., Orehotsky J., Visscher W., Srinivasan S., 1981, Ruthcnium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes, J. Electrochem. Soc., 128(9), 1900-1904 https://doi.org/10.1149/1.2127761