A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II)

산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II)

  • Published : 2009.01.31


Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.



  1. Lee K. W., Kim H. K., 2008, A study on the interrelation among organic pollutant indices of non-biodegradable paper wastewater, J. of Korean Soc. of Wat. Sci. and Tech., 16(1), 15-23
  2. Chen G., 2004, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41
  3. Coast C. R., Botta C. M. R., Espindola E. L. G., Oliva P., 2008, Electrochemical treatrnent of tannery wastewater using $DSA^{\circledR}$ electrodes, J. of Hazard. Mater., 153, 616-627
  4. Malpass G. R. P., Miwa D. W., Machado S. A. S., Olivi P., Motheo A. J., 2006, Oxidation of the atrazine at $DSA^{\circledR}$; electrodes, J. of Hazard. Mater. B, 137, 565-572
  5. Bertazzoli L., Pelegrini R., 2002, Photoelectrochemical discoloration and degradation of organic pollutants in aqueous solutions, Quim. Nova, 25, 477-482
  6. Rajkumar D., Kim J. G., 2006, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, J. Hazard. Mater., 136, 203-212
  7. Alves P. D. P., Spagnol M., Tremilinosi G., Andrade A. R. de, 2004, Investigation of the influence of the anode composition of DSA-type electrodes on the electrocatalytic oxidation of phenol in neutral medium, J. Braz. Chem. Soc., 15, 626-634
  8. Profeti D., Lassa1i T. A. F., Olivi P., 2006, Preparation of $Ir_{0.3}Sn_{(0.7-x)}Ti_{x}O_2 $electrodes by the polymeric precursor method: characterization and lifetime study, J. Appl. Electrochem., 36, 883-888
  9. Yang C. H., Lee C. C., Wen T. C., 2000, Hypochlorite genεration on Ru-Pt binary oxide for treatrnent of dye wastewater, J. Appl. Electrochem., 30, 1043-1051
  10. Vincent F., Morallon E., Quijada C., Vazquez J. L., Aldaz A., Cases F., 1998, Characterization and stability of doped $SnO_2 $ anodes, J. Appl. Electrochem., 607-612
  11. 박영식, 2008, 산화제 생성율이 높은 4성분계 촉매성 산화물 전극(DSA)을 이용한 염료의 간접 산화처리, 한국학술진흥재단 2007년도 지역대학우수 과학자, 최종보고서
  12. Feng J., Li X. Y., 2003, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, 2399-2407
  13. Feng Y., Cui Y., Logan B., Liu Z., 2008, Performance of Gd-doped Ti-based Sb-$SnO_2 $ anodes for electrochemical destruction of phenol, Chemosphere, 70, 1629-1636
  14. Chen X., Chen G., Yue P. L., 2001, Stable $Ti/IrO_x-Sb_2O_5-SnO_2$anode for $O_2$ evolution with low Ir Content, J. Phys. Chem. B., 105(20), 4623-4628
  15. Correa-Lozano B., Commninellis C., Battisti A. D., 1996, Electrochemical properties of $Ti/SnO_2-Sb_2O_5$ electrodes prepared by the spray pyrolysis technique, J. of Appl. Electrochem., 26, 683-688
  16. Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2001, Electro-activity and life time properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(II), Korean J. Chem. Eng., 39(2), 138-143
  17. Panizza M., Barbucci A., Ricotti R., Cerisola G., 2007, Electrochemical degradation of methylene blue, Sep. and Purifi. Tech., 54, 2007, 382-387
  18. Nanni I., Polizzi S., Benedetti A., Battisti A. D., 1999, Morphology, microstructure, and electrocatalytic properties of $RuO_2-SnO_2$ thin films, J. Electrochem. Soc., 146, 220-225
  19. Silva L. A., Alves V. A., Silva M. A. P., Trasatti S., Boodts J. F. C., 1997, Morphological, chemical and electrochemical properties of $Ti/(TiO_2+lrO_2) $electrodes, Can. J. Chem., 75, 1483-1493
  20. Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2000, Fabrication and material properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(I), Korean J. Chem. Eng., 38(6), 774-782
  21. Yao R. S., Orehotsky J., Visscher W., Srinivasan S., 1981, Ruthcnium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes, J. Electrochem. Soc., 128(9), 1900-1904