
INTRODUCTION

Intertidal regions have been considered as highly pro-
ductive systems in the marine environments (Valiela and
Teal 1979). In the intertidal flats, the benthic microalgae
play an important role as primary producers (Sullivan
and Daiber 1975; Rizzo and Wetzel 1985; Underwood
and Kromkamp 1999). This primary production of
organic compounds is the main food sources for micro-
bial, microbenthic, meiobenthic and macrobenthic organ-
isms abundant in the intertidal flats (Heip et al. 1995;
Kang et al. 2003). The primary production contributes to
a substantial proportion of the energy flow in estuarine
systems (Herman et al. 1999). In addition to supplying a
food resource, microalgae excrete high molecular weight
polysaccharides that contribute to sediment stabilization
and reduce sediment resuspension during both tidal
emergence and storms (Lucas et al. 2003). This protective

layer also prevents underlying heterotrophic bacteria
from being removed by abrasion (Miller et al. 1996). 

In nutrient dynamics of the intertidal ecosystems, sedi-
ments play a role as source through regeneration to the
water column deposited on the bottom (Hopkinson 1987)
and as sink through benthic nitrogen retention processes
including burial in deeper sediment layers and denitrifi-
cation (Smith et al. 1985). Benthic algae can significantly
reduce the release of nutrients from the sediments by uti-
lizing the nutrients when they diffuse across the surface
and indirectly by oxygenating surface sediment
(Andersen et al. 1984; Sundbäck and Granéli 1988; Rizzo
et al. 1992; Tyler et al. 2003; Sundbäck et al. 2004; Sin et al.
2006). 

The intertidal flats are located mainly in the west
coasts of Korea (83%) and especially 41% of the intertidal
flats located in the west and south coasts of Jeonnam
Province (http://www.wetland.or.kr). Various studies
have been reported focusing on dynamics of sedimenta-
tion (Choi 1992; Ryu et al. 2003; Ryu and Sin 2006), physi-
cal-chemical properties (Kim and You 2001; You et al.
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2003), macro-sized benthos (Koh and Shin 1988; An and
Koh 1992; Lim et al. 1997) for intertidal flats in Korea.
Variations of benthic microalgae biomass and communi-
ty were investigated for Kyonggi Bay (Yoo and Choi
2005), Kuem River (Kim and Cho 1985), Saemangeum
(Oh and Koh 1995; Oh et al. 2004), Youngkwang and
Gangjin (Lee 2002; Lee 2003). However, dynamics of ben-
thic microalgae were not explored for the intertidal flats
of Kwangyang Bay located in the south coast. 

The loss of intertidal flats in Kwangyang Bay has
increased since 1970s due to reclamation of shallow-
water area for construction of large-scaled port and
industry facilities. Water surface area was 233 km2 in
1973 and decreased to 193 km2 in 1990 (17% loss) and to
165 km2 (30% loss) in 2003 (Ryu 2003; Choi et al. 2003).
The intertidal flats are currently remained in the north-
ern and southern areas of Song Island. Although the
results have been reported on trophic importance of ben-
thic microalgae in the marine food web of the
Kwangyang Bay using isotope analyses (Kang et al. 2001;
Kang et al. 2003), variations of benthic microalgal bio-
mass and controlling mechanisms related to the varia-
tions were not documented. The goal of this study was to
investigate temporal and spatial distributions of benthic
microalgae and physical-chemical properties of sedi-
ments for better understanding dynamics of benthic
microalgae in the intertidal flats of Kwangyang Bay. 

MATERIALS AND METHODS 

Study sites 
The Kwangyang Bay is located in the central region of

South Coast and a semi-closed system surrounded by
Yosu Peninsula and Namhae Island (Fig. 1). Study sites
were selected from the intertidal flats in the range of 127°
34’-127° 39’ E, 34° 51’-34° 56’ N. The Kwangyang port
(container) and Yulchon industry clusters are located in
the east and west of the study sites and a sea dyke was
constructed for reclamation of coastal regions for 2 years
from 2003 to 2004 (Fig. 1). The intertidal flats in west of
Kwangyang Bay were mainly reclaimed and study sites
are the flats remained in the Kwangyang Bay.
Dongcheon stream is extended in the north of study sites
and freshwater is introduced especially during wet sea-
son. Main tidal channel is located between the
Kwangyang Port and Yulchon industry clusters and has
been dredged to maintain c.a. 7 m depth for transporta-
tion of vessels in the area. 

Sediment types of the study sites are grouped in three
classes including muddy sand, sandy mud and mud
(Ryu 2003). Sediments in the northern regions of inter-
tidal flats (Line-DW) are mainly composed of muddy
sand whereas sediments in the western regions (Line-
CH) are primarily sandy mud. Muds are abundant in the
subtidal zones. Annual average of air temperature and
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Fig. 1. Sampling sites including transect lines in intertidal flats of the Kwangyang Bay, Korea.



rainfall of the regions is 14.1°C and 1893.5 mm respec-
tively for 10 years from 1991 to 2000. The hydrological
data presented in the study were collected by Korea
Meteorological Administration. 

Sample collection and analyses 
Samples were collected at the beginning of low tide

when the flats were exposed to air in June, July,
September, November in 2004 and February and May in
2005. Stations were selected at interval of 100 m from
upper to lower regions of the intertidal flats in Dowal-Ri
(Line-DW) and Chohwa-Ri (Line-CH) (Fig. 1). Seasonal
characteristics were investigated by classifying June-July
as summer and September-November as fall. February
and May were classified as winter and spring respective-
ly. 

Temperature of sediments was measured after insert-
ing the mercury thermometer to the depth of 5 cm in the
sediments for 1 or 2 minutes. Interstitial water of surface
sediments (1 cm) was collected in-situ to measure ambi-
ent nutrients concentrations using a 100 ml syringe. The
interstitial water was filtered using 25 mm Acrodisc
Syringe Filters (0.45 µm) and inserted into HDPE bottle
for freezing. Ambient concentrations of nutrients includ-
ing nitrite+nitrate (NO2

– + NO3
–), ammonium (NH4

+),
orthophosphate (PO4

–3), and dissolved silica (DSi) were
measured by the nutrient autoanalyzer (Bran Luebbe).
Sediment cores (replicates) were collected using polycar-
bonate core tube (5 cm x 10 cm) to measure properties of
sediments such as water contents (%) and density (mg
cm–3) and chlorophyll a in the surface sediments.
Sediment samples were extruded gravimetrically and
sectioned at various depth using a sharp knife. Sediment
bulk density for aerobic (surface) and anaerobic (subsur-
face) layers of two cores was determined based on vol-
ume (ml) and dry weight (g) of sediments in the cores.
Aerobic and anaerobic layers were identified by colors of
layers. The sediments were dried at 50°C for 5-7 days to
obtain the dry weight. The porosity of the segments was
the mass difference between wet and dry sediments. One
segment (0-0.5 cm depth) of the two cores was analyzed
for chlorophyll a (Arar and Collins 1992). Sediment
chlorophyll a was measured by taking replicate samples
from each segment using 2 cm diameter core tubes to a
depth of at least 0.5 cm. Samples were extracted with 5
ml acetone (90%) in the dark for 24 hours analyzed by a
Turner Designs Model 10 Fluorometer (Arar and Collins
1992). Surface sediments were collected using a plastic
scoop and analyzed grain size by sieve procedure

(Ingram 1971). The ratios of fluorescence before and after
acidification (chlorophyll: pheopigment) were analyzed
as a proxy for grazing effect (top-down control) since
herbivores convert chlorophyll a to pheopigments, which
are released as egested fecal material. The ratio of chloro-
phyll a and pheopigments, calculated from the ratios of
fluorescence before and after acidification is an indirect
measure of grazing activity (e.g. Welschmeyer and
Lorenzen 1985); the lower the ratio, the higher the graz-
ing activity. 

RESULTS 

Sediment properties 
Records of rainfall and solar radiation collected near

the Kwangyang Bay area were presented in Figure 2.
Precipitation was extraordinarily high during summer
compared with other seasons indicating that the study
area is influenced by Monsoon climate (Fig. 2A). Solar
radiation was also high during summer and low during
winter similar to the annual patterns of other areas in
mid-latitude (Fig. 2B).

Figure 3 shows the seasonal characteristics of sedi-
ments including sediment temperature, water contents,
bulk density and sediment texture at the sampling sites
of Line-DW and Line-CH. Temperature was high in sum-
mer and low in winter and spatial difference was not
high between the sampling sites (Figs 3A and 3B).
Sediment temperature in the Line-CH was slightly high-
er than in the Line-DW. Seasonal variation of water con-
tents in the study sites was not evident but water con-
tents decreased as we approach seaward in the Line-DW
whereas water contents were remained similar as sea-
ward in the Line-CH (Figs 3C and 3D). Sediment bulk
density was generally high during spring and summer
whereas density was low during fall and winter in Line-
DW (Fig. 3E). In Line-CH bulk density of sediments was
relatively high during winter and spring and low during
summer and fall (Fig. 3F). Bulk density was mostly low
at the landward sites compared with that of seaward
sites in Line-DW whereas spatial variation was not evi-
dent in Line-CW. Silt and clay were dominant in the sed-
iment texture of the sites near lands but sediment texture
was shifted to sand-dominant texture (coarse) as sea-
ward in Line-DW (Fig. 3G). Silt and clay (fine) were
dominant in sediment texture of Line-CH except Station
CH9 where sand was dominated (Fig. 3H). 

Nutrient concentrations in the sediments including
nitrite+nitrate, ammonium, orthophosphate, silicate
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were shown in Fig. 4. Nitrite + nitrate concentrations
were highest during summer and lowest during winter
ranging from 1.67 µM (February) to 5767.2 µM (July) in
Line-DW (Fig. 4A). Similar pattern was observed for
nitrite+nitrate ranging from 0.57 µM (February) to 5461.2
µM (July) in Line-CH (Fig. 4B). No evident spatial varia-
tion was observed in Line-DW but the concentration
slightly decreased as seaward in Line-CH. Ammonium
concentrations were high during spring, summer and fall
whereas the concentrations were low during winter in
the Line-DW except Station DW4 (Fig. 4C) and similar
seasonal pattern was observed in the Line-CH (Fig. 4D).
Ammonium concentrations were decreased as seaward

in Line-DW whereas no clear trend was detected in Line-
CH. Orthophosphate concentrations were highest during
summer and lowest during winter ranging from 0.68 µM
(February) to 143.9 µM (July) in Line-DW except DW4
(Fig. 4E). Similar pattern was observed for orthophos-
phate ranging from 0.49 µM (February) to 76.4 µM
(September) in Line-CH (Fig. 4F). The concentration in
Line-DW was slightly decreased as seaward but no evi-
dent spatial variation was observed for Line-CH. Silicate
concentrations were highest during summer or fall and
lowest during winter except Station DW4 ranging from
3.4 µM (February) to 830.7 µM (July) in Line-DW (Fig.
4G). Silicate was maximum mostly during fall and mini-
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Fig. 2. Records of rain fall (mm) and solar radiation (M Joule m–2 d–1) for the Kwangyang Bay area from June, 2004 to May, 2005.
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Fig. 3. Sediment properties including temperature (°C), water contents (%), bulk density (g cm–3) and mean grain size % over the
sampling period in the intertidal flats of the Kwangyang Bay.
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Fig. 4. Nutrient (NH4
+, NO2

– + NO3
–, PO4

–3, DSi) concentrations in the porewater collected from the study sites.



mum during winter ranging from 3.3 µM (February) to
1052.2 µM (June) in Line-CH (Fig. 4F). No evident spatial
variations were observed in Line-DW and Line-CH. 

Variations of benthic microalgae biomass (chlorophyll a) 
Figure 5 shows the seasonal variations of sediment

chlorophyll a and the ratios of chlorophyll:pheopigment
from the sampling sites in the Line-DW and Line-CH.
Sediment chlorophyll a concentrations were maximum
during winter and minimum during summer or spring
(Fig. 5A) ranging from 8.3 mg m–2 (May) to 81.2 mg m–2

(February) in Line-DW. Sediment chlorophyll a concen-
trations were also high during winter compared with
other seasons ranging from 4.4 mg m–2 (November) to
73.2 mg m–2 (February) in Line-CH (Fig. 5B). No clear
spatial variations were observed in Line-DW and Line-
CH. The ratios of chlorophyll:pheopigment were rela-
tively high during winter and low during spring (Fig.
5C) ranging from 1.16 (June) to 1.77 (September) in Line-
DW. The ratios in Line-CH were also high during winter
but low during summer (Fig. 5D) ranging from 1.07
(June) to 2.3 (November). In general, the ratios, indirect
index for grazing activity or poor growth environments

were low, suggesting that benthic microalgae experience
active grazing or environmental stress in the sampling
sites.

Three stations were selected between land boundary
and boundary of open ocean at Line-DW and Line-CH
respectively to compare the sediment chlorophyll a con-
centrations during the sampling periods (Fig. 6).
Chlorophyll a concentrations were highest in February,
2005 at the Line-DW and CH whereas the pattern of spa-
tial variations was reversed. Station close to land (DW 1)
had higher concentrations than stations close to open
ocean (DW3, 5) in the Line-DW while chlorophyll a were
lower at the station landward (CH1) than stations sea-
ward (CH5, 9). Minimum chlorophyll a concentrations
were observed during July, 2004 in the Line-DW whereas
minimum was detected during November, 2005 in the
Line-CH especially at Station 5. In September (2005) rela-
tively high chlorophyll a developed especially at the sta-
tions DW5 and CH5 and stations seaward had higher
level than stations near land. 

Analyses of regression 
Results from simple linear regression analysis on
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Fig. 5. Seasonal variations of sediment chlorophyll a concentrations (mg m–2) and ratios of fluorescence before and after acidification
(chlorophyll:pheopigment) from the sampling stations.



chlorophyll a versus various parameters were shown in
Table 1. Sediment bulk density was negatively correlated
with chlorophyll a at stations seaward in the Line-DW
but positively correlated in many stations the Line-CH.
Sediment temperature had a negative relationship with
chlorophyll a in the Line-DW and CH. Water contents in
sediments were negatively correlated with chlorophyll a
at station close to land (DW2) but positively correlated at
stations near open ocean (DW5, DW6) in the Line-DW.
Significant correlation between water contents and
chlorophyll a was not observed in the Line-CH. 

Negative correlation was observed between nitrate +
nitrate and in Line-DW and similar relationship was gen-
erally observed in Line-CH except Stations CH3 and
CH6 where positive correlation was detected. Significant
negative correlation was observed between ammonium
and chlorophyll a in the Line-DW and similar relation-
ship was detected in the Line-CH. Orthophosphates and
silicates were negatively correlated with chlorophyll a in

Line-DW. In Line-CH chlorophyll a were generally nega-
tively correlated with the nutrients except the Stations
CH3, CH6 where positive relationship was observed. 

The ratios of chlorophyll:pheopigment were positively
correlated with in Line-DW and similar relation was
detected in Line-CH except Station CH8, suggesting that
benthic microalgae were influenced by physical environ-
mental stress and/or biological interaction such as graz-
ing. Percentage of sand in sediment texture was signifi-
cantly and positively correlated with chlorophyll a at
Station DW1 of Line-DW whereas percentage of clay was
significantly and negatively correlated in the station. The
relationship was reversed in Station DW4. In Line-CH,
sand and clay were mostly positively correlated with
chlorophyll a especially at stations near land whereas
negative relationship was detected between silt and
chlorophyll a. 

Multiple regression analyses indicated that sediment
temperature, water contents, chlorophyll:pheopigment,

156 Algae Vol. 24(3), 2009

 

 
 

 
 

 
 
 

 

      

 

 
 

 
 

 
 
 

Fig. 6. Temporal variations of sediment chlorophyll a concentrations (mg m–2) collected from Stations DW-1, DW-3, DW-5 in Line-
DW and Stations CH1, CH5 and CH9 in Line-CH of the study sites.



clay % and ammonium were responsible for 64% of the
variation in sediment chlorophyll a in Line-DW. The sed-
iment temperature, chlorophyll:pheopigment and
nitrite+nitrate were responsible for 41% of the variation
in sediment chlorophyll a in Line-CH.

DISCUSSION

Sediment microalgae play an important role both as
food for benthic organisms and a source of nutrients for
the overlying water column after decomposition
(Middlelburg et al. 1996; Herman et al. 2000; Cook et al.
2004b). The importance of sediments as a source of
ammonium to support water column primary productiv-
ity during the summer was documented for estuarine
systems (Seitzinger and Nixon 1985; Nixon 1987;
Pinckney and Zingmark 1993; Cowan and Boynton 1996
Cowan et al. 1996; Sullivan and Currin 2000). Nutrient
concentrations in porewater of sediments in this study
are greatly higher than those in water column near the
study sites (c.f., Lee et al. 2001), suggesting that nutrient
released from sediment are supplied to water column in
the Kwangyang Bay. Trophic importance of the sediment
microalgae to Kwangyang Bay food webs was reported
by Kang et al. (2001, 2003). Biomass of sediment microal-
gae (chlorophyll a) ranged from 4.4 to 81.2 mg m–2 in this
study and was relatively high compared with other tidal
flat systems such as Mangyung (0.24-32.11 mg m–2) and
Ganghwa tidal flat (1.18-34.25 mg m–2) in Korea (Oh et al.
2004; Yoo and Choi 2005). Primary production in sedi-
ments was generally high during spring or summer
(MacIntyre et al. 1996). Biomass in this study was high
during winter (February, 2005) and low during summer
(July, 2004) as presented in Figs 3 and 4. The similar pat-
tern of seasonal variations was observed in the
Mangyung and Ganghwa tidal flat and diatoms were
dominant in the microalgal population of the tidal flats
(Oh et al. 2004; Yoo and Choi 2005). Earlier studies
(Yoder 1979; Smayda 1980) documented that growth of
diatoms in water column such as Skeletonema costatum
was preferred by low water temperature and light inten-
sity. The relationship between sediment temperature and
chlorophyll a concentrations was reported from the com-
parison between field study and mesocosm experiments
for a lagoon system in the Western Australia (Kendrick et
al. 1998). Results from regression analyses in this study
(Table 1) also showed that chlorophyll a concentrations
were significantly negatively correlated with sediment
temperature, suggesting that growth of benthic microal-

gae dominated by diatoms is affected by sediment tem-
perature. High intensity of solar radiation during sum-
mer (Fig. 1) also may influence growth of benthic
microalgae in the study sites since the samples were
taken when the sediments were exposed to air. This
hypothesis is supported by the result that chlorophyll a
concentrations collected in Line-DW were significantly
and negatively correlated with solar radiation in air from
the correlation analyses in this study (R = –0.33, p < 0.1).
However, further studies including mesocosm experi-
ments are required for better understanding the direct
effects of temperature and solar radiation on sediment
chlorophyll a in the tidal flat of Kwangyang Bay.

de Jonge (1985) reported that the diatoms were domi-
nant in mud coating sand grains since mud rather than
in the bare parts of the sand grains systems since mud
serves as a substratum for diatoms on the tidal flats.
Lower rates of primary production were observed at
coarse grain-sized sediments (greater exposure to water
energy) than fine grain-sized sediments (Cook et al.
2004a). Herman et al. (2001) proposed that high mud con-
tent in tidal flats reduce grazing pressure on microalgae
from the ECOFLAT studies. In this study sand percent-
age in grain size of Line-DW was increased as seaward
(Fig. 3G) but chlorophyll a concentrations were not var-
ied (Fig. 5A). Results from regression analyses also did
not show clear relationship between grain size and
chlorophyll a concentrations (Table 1), suggesting that
grain size was not major factor controlling the biomass of
benthic microalgae in the study sites. In Line-CH, sand
percentage in grain size extraordinarily increased at
Station CH9 (Fig. 3H) whereas chlorophyll a concentra-
tions were not higher than at Station CH10 (Fig. 5B)
where sand percentage was low. The high percentage of
coarse grain (sand) at Station CH9 is due to dumping
sands into the sites for aquaculturing shot-neck clams
(Ruditapes philippinarum). 

Nutrient concentrations in the Line-CH were generally
higher than those in Line-DW (Fig. 4). This difference
may be resulted from different water contents (Figs 3C
and 3D) caused by gradient of grain size in sediment
between the Line-DW and Line-CH (Figs 3G and 3H). A
more stable habitat with higher concentrations of
reduced nutrients such as ammonium has been reported
to be favored by benthic microalgae within soft sedi-
ments (Saburova and Polikarpov 2003). The preference of
microalgae to the stable habitat with high levels of nutri-
ents was not observed in this study since chlorophyll a
concentrations were not significantly different between
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the Line-DW and Line-CH in this study (Figs 5 and 6).
However, significant negative correlation of ammonium
vs. chlorophyll a concentrations in sediments (Table 1)
suggests that benthic microalgae prefer ammonium,
more reduced N to nitrite+nitrate and ammonium avail-
ability may affect the growth of benthic microalgae in the
study sites. 

Aquatic and benthic microalgae biomass is controlled
by top-down such as grazing by consumers as well as
bottom-up mechanisms including physical and chemical
variability (Goldfinch and Carman 2000; Worm et al.
2002; Pinckney et al. 2003). In this study, quantitative
relationships between meiofaunal grazers and microal-
gae were not investigated but the ratio of chlorophyll a
and pheopigments was used to examine the grazing
effects. The ratios in the study sites were relatively low
(1.41 ± 0.15 for Line-DW, 1.36 ± 0.19 for Line-CH), sug-
gesting that grazing by meiofaunal consumers affects
biomass of benthic microalgae. chlorophyll a concentra-
tions were high during winter concomitant with high
chlorophyll: pheopigment ratios (Fig. 5). Significant cor-
relation of sediment Chlorophyll a concentrations vs.
chlorophyll:pheopigments was also observed (Table 1).
Tight coupling of trophic relationships between mac-

robenthos and microalgae reported by Kang at al. (2003)
for the intertidal flats of Kwangyang Bay also support
the scenario of bottom-up controls on benthic microalgae
in the study sites. However, pheopigments can also be
produced within phytoplankton cells during senescence
caused by poor growth environments or prolonged
exposure to the dark (Yentsch 1967; Daley and Brown
1973). Thus, it is difficult to distinguish the relative
importance of grazing vs. other factors related to bottom-
up control in regulating the phytoplankton community
without the direct investigation on grazing effects in the
study sites. 

Algal colonized sediments can utilize nitrate, and thus
reduce nitrogen fluxes to the water column (Tyler et al.
2003; Sundbäck et al. 2004; Sin et al. 2006). In addition
oxygen produced by microalgal photosynthesis stimu-
lates nitrification (an aerobic process), thus inducing cou-
pled nitrification-denitrification (Risgaard-Petersen et al.
1994). At low nitrate concentrations, however, nitrifica-
tion-denitrification may be suppressed by microalgae
due to microalgal utilization of the nitrate at the sedi-
ment-water interface (Sundbäck et al. 2004). Results from
the regression analysis of this study showed that nitrite +
nitrate concentrations in porewater were negatively
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Table 1. Results (R2) of simple linear regression analyses of sediment chlorophyll a vs. various sediment properties from sampling
sites. R2 values less than 0.2 were omitted and denoted by ‘-’ (Negative values denote negative relationships)

Parameters W 
Stations

Density Temp
Content

NO2
–+NO3

– NH4
+ PO4

3– SiO2 a/b ratio Sand Silt Clay

DW1 - -0.74* -0.59 -0.32 -0.71 -0.35 -0.42 0.59 0.85** 0.20 -0.80*
DW2 - -0.48 -0.84** -0.20 -0.84** - - 0.89** 0.62 -0.32 -0.24
DW3 0.28 -0.43 - -0.26 -0.81* -0.26 -0.34 0.36 -0.42 0.23 0.46
DW4 -0.30 -0.70 0.22 -0.31 0.48 -0.27 - 0.44 -0.76* -0.61 0.90**
DW5 -0.54 -0.55 0.81* - -0.64 - - 0.39 - - 0.23
DW6 -0.65 -0.58 0.95** -0.35 -0.72 -0.43 -0.36 - -0.36 0.30 0.38
All stations - -0.57** - -0.25 -0.50** -0.27 -0.24 0.44** - - -

CH1 0.90** -0.73 - - -0.64 -0.43 -0.47 0.85** -0.27 0.45 -0.39
CH2 0.44 -0.43 -0.49 -0.66 -0.74 -0.59 0.87** 0.35 -0.45 0.39
CH3 0.27 -0.32 - 0.22 -0.32 0.36 0.29 0.61 0.77* -0.70 -
CH4 0.30 -0.22 - - -0.22 - - 0.70 0.39 -0.30 -
CH5 -0.31 -0.35 - -0.32 -0.39 -0.38 -0.43 0.71 0.49 -0.39 0.28
CH6 0.48 - -0.35 0.36 -0.27 0.22 0.22 - - -0.64 0.63
CH7 0.61 - -0.66 - -0.44 - - 0.60 - - -
CH8 - -0.22 0.24 - -0.26 - - -0.61 - 0.23 -0.23
CH9 0.53 -0.80* -0.23 -0.36 -0.60 -0.20 -0.26 0.71 -0.36 0.55 -
CH10 - -0.78* - -0.40 -0.44 -0.26 -0.39 0.46 -0.28 - -
All stations 0.20 -0.42** - -0.20 -0.29** - -0.23* 0.39** - - -

Density = sediment bulk density, Temp = temperature, W Content = water content, a/b ratio = ratios of fluorescence before and after
acidification
*p < 0.1, **p < 0.05.



related with sediment chlorophyll a concentrations but
the relationship was not significant (Table 1) although
nitrite+nitrate concentrations were greatly higher espe-
cially during summer and fall than those in water col-
umn near the study sites (c.f., Lee et al. 2001). Instead,
significant negative correlation of ammonium vs. chloro-
phyll a concentrations was observed, suggesting that
benthic microalgal community reduce benthic ammoni-
um fluxes from sediments to water column. Nitrite +
nitrate and orthophosphate concentrations were high
during summer and fall but rapidly decreased during
winter when chlorophyll a concentrations were high,
suggesting that benthic microalgae utilize the nutrients
during winter. Silicate concentrations were also signifi-
cantly and negatively correlated with chlorophyll a and
the results support the feature that benthic microalgae
reduce benthic nutrient fluxes especially for ammonium
and silicates from sediment to water column in the inter-
tidal flats. The porewater nutrients at high concentra-
tions during summer and fall may be diffused into water
column and contribute to phytoplankton blooms which
often develop during summer in water columns of the
Kwangyang Bay (c.f. Kwon et al. 2004). 
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