DOI QR코드

DOI QR Code

Characteristics of Benthic Chlorophyll a and Sediment Properties in the Tidal Flats of Kwangyang Bay, Korea

  • Sin, Yong-Sik (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • Ryu, Sang-Ock (Institute of Tidal-Flat Research, Mokpo National University) ;
  • Song, Eun-Sook (Coastal Estuarine Research Center, Mokpo National Maritime University)
  • Published : 2009.09.01

Abstract

Characteristics of benthic microalgae and sediment properties were investigated for the intertidal flats of Kwangyang Bay, Korea. Sampling stations were selected every 100 m in the intertidal flats from land-side to open ocean at two different sampling sites. Samples were collected in June 2004, July, September, November, February and May 2005. Sediments properties were measured including temperature, water contents, sediment bulk density, nutrient concentrations in porewater. Chlorophyll a concentrations in surface sediment (0.5 cm) were measured and relationships between the chlorophyll a and various sediment properties were analyzed to identify major mechanisms regulating biomass of benthic microalgae in the intertidal flats using simple linear regression analysis. Sediment chlorophyll a concentrations were maximum during winter and minimum during warm seasons ranging from 4.4 mg $m^{-2}\;to\;81.2\;mg\;m^{-2}$. No clear spatial variations were observed for the sediment chlorophyll a in the study sites. Results from regression analysis suggested that benthic microalgae biomass was affected by sediment temperature and nutrients especially ammonium and silicate. Grazing effect was estimated using chlorophyll: pheopigments ratio, indirect indicator of grazing activity, and the positive correlation of the ratio and chlorophyll a implied that microalgae biomass is affected by grazing of zoobenthos although direct measurement of grazing activity is required to determine the importance of top-down controls in the benthic microalgae dynamics.

References

  1. An S.M. and Koh C.H. 1992. Environments and distribution of benthic animals on the Mangyung-Dongjin tidal flat, west coast of Korea. J. Korean Soc. Oceanogr. 27: 78-90
  2. Andersen T.K., Jensen M.H. and Sorensen J. 1984. Diurnal variation of nitrogen cycling in coastal, marine sediments. 1. Denitrification. Mar. Biol. 83: 171-176 https://doi.org/10.1007/BF00394725
  3. Arar E.J. and Collins G.B. 1992. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater phytoplankton by fluorescence. In: USEPA Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Samples, EPA/600/R-92/121, Cincinnati, OH
  4. Choi D., Hyun S. and Lee T. 2003. Recent geomorphological changes and late Quaternary depositional sequence of Gwangyang Bay, southern coast of Korea. J. Korean Soc. Oceanogr. 8: 35-43
  5. Choi O.L. 1992. Sedimentation in the Nearshore zones (Intertidal and Subtidal) of the Dongjin and Mangyung Rivers, West Coast of Korea. M.S. Thesis, Seoul National University
  6. Cook P.L.M., Butler E.C.V. and Eyre B.D. 2004a. Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. I. Benthic metabolism. Mar. Ecol. Prog. Ser, 280: 25-38 https://doi.org/10.3354/meps280025
  7. Cook P.L.M., Revill A.T., Clementson L.A. and Volkman J.K. 2004b. Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matter. Mar. Ecol. Prog. Ser. 280: 55-72 https://doi.org/10.3354/meps280055
  8. Cowan J.L.W. and Boynton W.R. 1996. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19: 562-580 https://doi.org/10.2307/1352518
  9. Cowan J.L.W., Pennock J.R. and Boynton W.R. 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Mar. Ecol. Prog. Ser. 141: 229-245 https://doi.org/10.3354/meps141229
  10. Daley R.J. and Brown S.R. 1973. Experimental characterization of lacustrine chlorophyll diagenesis 1. Physiological and environmental effects. Arch. Hydrobiol. 72: 277-304
  11. De Jonge V.N. 1985. The occurrence of “episammic” diatom populations: A result of interaction between physical sorting of sediment and certain properties of diatom species. Estuar. Coast. Shelf Sci. 21: 607-622 https://doi.org/10.1016/0272-7714(85)90061-7
  12. Goldfinch A.C. and Carman K.R. 2000. Chironomid grazing on benthic microalgae in a Louisiana salt marsh. Estuaries 23: 536-547 https://doi.org/10.2307/1353144
  13. Heip C.H.R., Goosen N.K., Herman P.M.J., Kromkamp J., Middelburg J.J. and Soetaert K. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev. 33: 1-150
  14. Herman P.M.J., Middelburg J.J. and Heip C.H.R. 2001. Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Con. Shelf Res. 21: 2055-2072 https://doi.org/10.1016/S0278-4343(01)00042-5
  15. Herman P.M.J., Middelburg J.J., Van de Koppel J. and Heip C.H.R. 1999. Ecology of estuarine macrobenthos. Adv. Ecol. Res. 29: 195-240 https://doi.org/10.1016/S0065-2504(08)60194-4
  16. Herman P.M.J., Middelburg J.J., Widdows J., Lucas C.H. and Heip C.H.R. 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labeling of food resources for macrobenthos. Mar. Ecol. Prog. Ser. 204: 79-92 https://doi.org/10.3354/meps204079
  17. Hopkinson Jr C.S. 1987. Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight, USA. Mar. Biol. 94: 127-142 https://doi.org/10.1007/BF00392905
  18. Ingram R.L. 1971. Sieve analysis. In: Carver R.E. (ed.), Procedures in Sedimentary Petrologym. Wiley-Inter Science, Inc., New York. pp. 49-67
  19. Kang C.K., Kim J.B., Kim J.B., Lee P.Y. and Hong J.S. 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: $\delta^{13}C$ analysis. J. Korean Soc. Oceanogr. 36: 109-123
  20. Kang C.K., Kim J.B., Lee K.S., Kim J.B., Lee P.Y. and Hong J.S. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser. 259: 79-92 https://doi.org/10.3354/meps259079
  21. Kendrick G.A., Langtry L.S., Fitzpatrick J., Griffiths R. and Jacoby C.A. 1998. Benthic microalgae and nutrient dynamics in wave-disturbed environments in Marmion Lagoon, Western Australia, compared with less disturbed mesocosms. J. Exp. Mar. Biol. Ecol. 228: 83-105 https://doi.org/10.1016/S0022-0981(98)00011-2
  22. Kim J.G. and You S.J. 2001. Estimation of decomposition capacity for organic matter in tidal flat sediments at Saemankeum area. J. Environ. Sci. 10: 315-321
  23. Kim J.H. and Cho K.J. 1985. The physio-chemical properties of sediment, the species composition and biomass of benthic diatoms in the intertidal zone of Keum River estuary. Korean J. Ecol. 8: 199-207
  24. Koh C.H. and Shin H.C. 1988. Environmental characteristics and distribution of macrobenthos in a mud flat of the west coast of Korea (Yellow Sea). Netherlands J. Sea Res. 22: 279-290 https://doi.org/10.1016/0077-7579(88)90030-0
  25. Kwon K., Moon C., Lee J., Yang S., Park M. and Lee P. 2004. Estuarine behavior and flux of nutrients in the Seomjin River estuary. J. Korean Soc. Oceanogr. 9: 153-163
  26. Lee H.Y. 2002. Comparison of the effects of physicochemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of south-west Korea. J. Environ. Sci. 11: 529-535
  27. Lee H.Y. 2003. Studies on the distribution of the microalgae in the tidal flats of Gamami Beach, Young-Gwang, Korea. J.Environ. Sci. 12: 715-724 https://doi.org/10.5322/JES.2003.12.7.715
  28. Lee Y.S., Lee J.S., Jung R.H., Kim S.S and Go W.J. 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Korean Soc. Oceanogr. 6: 201-210
  29. Lim H.S., Park K.Y., Ihm B.S., Lee J.S. and Chu S.D. 1997. Macrozoobenthic community on the mudtidalflat around Mokpo coastal area, Korea. Korean J. Ecol. 20: 355-365
  30. Lucas C.H., Widdows J. and Wall L. 2003. Relating spatial and temporal variability in sediment chlorophyll a and carbohydrate distribution with erodibility of a tidal flat. Estuaries 26: 885-893 https://doi.org/10.1007/BF02803347
  31. MacIntyre H.L., Geider R.J. and Miller D.C. 1996. Microphytobenthos: the ecological role of the 'secret garden' of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuaries 19: 186-201 https://doi.org/10.2307/1352224
  32. Middlelburg J.J., Klaver G., Nieuwenhuize J., Wielemaker A., De Haas W., Vlug T. and Van der Nat J.F.W.A. 1996. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132: 157-168 https://doi.org/10.3354/meps132157
  33. Miller D.C., Geider R.J. and MacIntyre H.L. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II Role in sediment stability and shallow-water food webs. Estuaries 19: 202-407 https://doi.org/10.2307/1352225
  34. Nixon S.W. 1987. Chesapeake Bay nutrient budgets - a reassessment. Biogeochemistry 4: 77-90 https://doi.org/10.1007/BF02187363
  35. Oh S.H. and Koh C.H. 1995. Distribution of diatoms in the surficial sediments of the Mangyung-Dongjin tidal flat, west coast of Korea (Eastern Yellow Sea). Mar. Biol. 122: 487-496 https://doi.org/10.1007/BF00350883
  36. Oh S.J., Moon C.H. and Park M.O. 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Korean Fish. Soc. 37: 215-225 https://doi.org/10.5657/kfas.2004.37.3.215
  37. Pinckney J.L. and Zingmark R.G. 1993. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16: 887-897 https://doi.org/10.2307/1352447
  38. Pinckney J.L., Carman K.R., Lumsden S.E. and Hymel S.N. 2003. Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquat. Microb. Ecol. 31: 99-108 https://doi.org/10.3354/ame031099
  39. Risgaard-Peterson N., Rysgaard. S., Nielsen L.P. and Revsbech N.P. 1994. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol. Oceanogr. 39: 573-579 https://doi.org/10.4319/lo.1994.39.3.0573
  40. Rizzo W.M. and Wetzel R.L. 1985. Intertidal and shoal benthic community metabolism in a temperate estuary: studies of spatial and temporal scales of variability. Estuaries 8: 342-351 https://doi.org/10.2307/1351871
  41. Rizzo W.M., Lackey G.J. and Christian R.R. 1992. Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Mar. Ecol. Prog. Ser. 86: 51-61 https://doi.org/10.3354/meps086051
  42. Ryu S.O. 2003. Spatial and temporal variation of grain size of the surface sediments in Kwangyang Bay, South Coast of Korea. J. Korean Soc. Oceanogr. 8: 340-348
  43. Ryu S.O. and Sin Y.S. 2006. Sedimentologic characteristics of tidal flat sediments after the construction of sea dyke in Kwangyang Bay, south coast of Korea. Korean Ear. Sci. Soc. 27: 659-669
  44. Ryu S.O., Kim J.Y., Lee H.J., Cho Y.G. and Ahn S.M. 2003. Seasonal changes of tidal-flat sediments: Kwangyang Bay, south coast of Korea. J. Korean Soc. Oceanogr. 8: 349-356
  45. Saburova M.A. and Polikarpov I.G. 2003. Diatom activity within soft sediments: behavioural and physiological processes. Mar. Ecol. Prog. Ser. 251: 115-126 https://doi.org/10.3354/meps251115
  46. Seitzinger S.P. and Nixon S.W. 1985. Eutrophication and the rate of denitrification and N2O production in coastal marine sediments. Limnol. Oceanogr. 30: 1332-1339 https://doi.org/10.4319/lo.1985.30.6.1332
  47. Sin Y., Sigleo A.C. and Song E. 2006. Nutrient fluxes in the microalgal- dominated intertidal regions on the lower Yaquina Estuary, Oregon (USA). Northwest Science 81: 50-61 https://doi.org/10.3955/0029-344X-81.1.50
  48. Smayda T.J. 1980. Phytoplankton species succession. In: Morris I. (ed.), The physiological ecology of phytoplankton. Blackwell Inc., Oxford. pp. 493-570
  49. Smith C.J., Delaune R.D. and Patrick Jr. W.H. 1985. Fate of riverine nitrate entering an estuary: 1. Denitrification and nitrogen burial. Estuaries 8: 15-21 https://doi.org/10.2307/1352117
  50. Sullivan M.J. and Daiber F.C. 1975. Light, nitrogen, and phosphorus limitation of edaphic algae in a Delaware salt marsh. J. Exp. Mar. Biol. Ecol. 18: 79-99 https://doi.org/10.1016/0022-0981(75)90018-0
  51. Sullivan M.J. and Currin C.A. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes. In: Weinstein M.P. and Kreeger D.A. (eds), Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht. pp. 81-106
  52. Sundback K. and Graneli W. 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Mar. Ecol. Prog. Ser. 43: 63-69 https://doi.org/10.3354/meps043063
  53. Sundback K., Linares F., Larson F., Wuff A. and Engelsen A. 2004. Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: The role of denitrification and microphytobenthos. Limnol. Oceanogr. 49: 1095-1107 https://doi.org/10.4319/lo.2004.49.4.1095
  54. Tyler A.C., McGlathery K.J. and Anderson I.C. 2003. Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limnol. Oceanogr. 48: 2125-2137 https://doi.org/10.4319/lo.2003.48.6.2125
  55. Underwood G.J.C. and Kromkamp J. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res. 29: 93-153 https://doi.org/10.1016/S0065-2504(08)60192-0
  56. Valiela I. and Teal J.M. 1979. Nitrogen budget of a salt marsh ecosystem. Nature 280: 702-724 https://doi.org/10.1038/280702a0
  57. Welschmeyer N.A. and Lorenzen C.J. 1985. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30: 1-21 https://doi.org/10.4319/lo.1985.30.1.0001
  58. Worm B., Lotze H.K., Hillebrand H. and Sommer U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417: 848-851 https://doi.org/10.1038/nature00830
  59. Yentsch C.S. 1967. The measurement of chloroplastic pigmentsthirty pigmentsthirty years of progress? In: Golterman H.C. and Clymo. R.S. (eds), Chemical Environment in the Aquatic Habitat. North-Holland, Inc., Amsterdam. pp. 225-270
  60. Yoder J.A. 1979. A comparison between the cell division rate of natural populations of the marine diatom Skeletonema costatum (Greville) Cleve grown in dialysis culture and that predicted from a mathematical model. Limnol. Oceanogr. 24: 97-106 https://doi.org/10.4319/lo.1979.24.1.0097
  61. Yoo M.H. and Choi J.K. 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Oceanogr. 10: 8-18
  62. You S.J., Kim J.G. and Cho E.I. 2003. Characteristics of particle composition and organic matter distribution for tidal flat sediments in the Saemankeum area. J. Korean Fish. Soc. 36: 49-54 https://doi.org/10.5657/kfas.2003.36.1.049

Cited by

  1. Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina) vol.91, pp.2, 2015, https://doi.org/10.1016/j.marpolbul.2014.10.008
  2. Microphytobenthic biomass, species composition and environmental gradients in the mangrove intertidal region of the Andaman Archipelago, India vol.189, pp.5, 2017, https://doi.org/10.1007/s10661-017-5936-0
  3. sp. habitat on the Kenjeran Water, Surabaya vol.139, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/139/1/012016