DOI QR코드

DOI QR Code

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics

망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구

  • Pal, Dharmendra ;
  • Pandey, J.L. ;
  • Shripal
  • Published : 2009.02.20

Abstract

The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.

Keywords

Mn-doped Layered titanium oxide ceramics;Dielectric Properties;Polaronic Conduction;Ionic Conduction

References

  1. S. Anderson and A. D. Wadsley, Acta Crystallographic, 1961, 14, 1245 https://doi.org/10.1107/S0365110X61003636
  2. S. Anderson and A. D. Wadsley, Acta Crystallographic, 1962, 15, 194 https://doi.org/10.1107/S0365110X62000511
  3. O. V. Yakubovich and V.V. Kireev, Crystallographic Reports, 2003, 48(1), 24 https://doi.org/10.1134/1.1541737
  4. Shuji Ogura, Mitsuru Kohno, Kazunori Sato and Yasunobu Inoue, J. Material Chem. 1998, 8(11), 2335 https://doi.org/10.1039/a805172k
  5. A. L. Sauvet, S. Baliteau, C. Shopez and P. Fabry, J. Solid State Chem. 2004, 177, 4508 https://doi.org/10.1016/j.jssc.2004.09.008
  6. M. Machida, X. W. Ma, H.Taniguchi, J. Yabunaka J.Kijima J. Mol. Catal. A: Chem. 2000,155, 131 https://doi.org/10.1016/S1381-1169(99)00329-5
  7. S. Kikkawa, F. Yasuda, M. Koizumi, Mater. Res. Bull. 1985, 20, 1221 https://doi.org/10.1016/0025-5408(85)90096-0
  8. Shripal Prem Chand, and S.D. Pandey, .Solid state communications, 1989, 69(12), 1203 https://doi.org/10.1016/0038-1098(89)91065-X
  9. Shripal, Prem Chand, S. D. Panday. J. Mater. Sci.: Materials in Electronics 1991, 2 89 https://doi.org/10.1007/BF00703465
  10. Shripal, A. K. Mishra, S.D.Panday and R. P. Tandon, Eur. J. Solid State Inorg. Chem. 1992, 29, 229
  11. Shripal, R. P. Tandon and S.D. Panday, J. Phys. Chem. Solids 1991, 52(9), 1101 https://doi.org/10.1016/0022-3697(91)90043-Y
  12. Shripal, Sugandha Badhwar, Deepam Maurya, Jitendra Kumar, J. Mater. Sci.: Materials in Electronics 2005, 16, 495 https://doi.org/10.1007/s10854-005-2723-4
  13. Shripal, Deepam Maurya, Shalini and Jitendra Kumar, Material Sci. and Engineering B, 2007 136, 5 https://doi.org/10.1016/j.mseb.2006.06.031
  14. Deepam Maurya, Jitendra Kumar, Shripal, J. Phys. Chem. Solids, 2005, 66, 1614 https://doi.org/10.1016/j.jpcs.2005.05.080
  15. Shripal Sugandha Badhwar, Deepam Maurya, Jitendra Kumar and R. P. Tandon, Advances in Condensed Matter Physics, edited by K. K. Rana (Allied Publisher, New Delhi) 2005, 250
  16. D.Pal, R. P.Tandon and Shripal, Indian Journal of Pure and Applied Physics, 2006, 44(6), 435
  17. D. Pal, Prem Chand, R. P. Tandon and Shripal, JKCS 2005, 49(6), 560
  18. T. Sasaki, M. Watanabe, Y. Komatsu and Y. Fujiki, Inorg. chem. 1985, 24, 2265 https://doi.org/10.1021/ic00208a028
  19. H. Izawa, S. Kikkawa, M. Koizumi, J. Solid State Chem. 1987, 69, 336 https://doi.org/10.1016/0022-4596(87)90091-0
  20. H. Izawa, S. Kikkawa, M. Koizumi, J. Solid State Chem. 1985, 60, 269 https://doi.org/10.1016/0022-4596(85)90277-4
  21. H. Izawa, S. Kikkawa, M. Koizumi, Polyhedron 1983, 2, 741 https://doi.org/10.1016/S0277-5387(00)87201-0
  22. N. Shinizuand M. Nakanishi, Japan Patent Kokai Tokkyo Koho JP01, 1989, 249, 38
  23. M. Koizumi, S. Yoshikawa and H. Izawa., Japan Patent Kokai Tokkyo Koho JP62, 1987, 100, 411
  24. M. W. Anderson and J. Klinowaski, Inorg. Chem. 1990, 29, 3260 https://doi.org/10.1021/ic00342a047
  25. W. H. Hou, Q. J. Yan and X. C. Fu, J. Chem. Soc. Chem. Communication, 1994 1371 https://doi.org/10.1039/C39940001371
  26. C. X. Guo W. H. Hou, M. Gou, Q. J. Yan and Y. Chen, J. Chem. Soc. Chem. Communication (Cambridge) 1997, 801 https://doi.org/10.1039/a700567i
  27. T. Chen, W. H. Hou, C. X. Guo, O. J. Yan and Y. Chen, J. Chem. Soc. Dalton Trans. 1997, 92, 359
  28. T. Sato, Y. Yamamoto, Y. Fujishiro and S. Uchida, J. Chem. Soc. Faradey Trans. 1996, 92, 5089 https://doi.org/10.1039/ft9969205089
  29. S. Cheng and T. C. Wang, J. Inorg. Chem. 1989, 28, 1283 https://doi.org/10.1021/ic00306a016
  30. J. N. Kondo, S. Shibata, Y. Ebina, K. Domen and A. Tanaka, J. Phys. Chem. 1995, 99, 16043 https://doi.org/10.1021/j100043a051
  31. M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier and W. Sitte, J. Chem. Thermodynamics, 2003, 35, 1469 https://doi.org/10.1016/S0021-9614(03)00125-3
  32. K. J. Range, H. Fisher, F. Ketterl, S. Afr. J. Chem. 1987, 40, 233
  33. A. D. Wadsley, W. G. Mumme, Acta Cryst. B24 1968, 392 https://doi.org/10.1107/S0567740868002426
  34. M. Dion, Y. Piffard, M. Tournoux, J. Inorg. Nucl. Chem. 1967, 40(12), 1442 https://doi.org/10.1016/0022-1902(78)80067-0
  35. V. B. Nalbandyan, I. L. Shukaev, Z. Neorgam, Khimii, Russian J. Inorg. Chem. 1990, 35, 1085
  36. M. Sh. Khalil and F. F. Hammad, Egypt. J. Sol. 2002, 25(2), 1-9
  37. Seoung-soo Lee and Song-Ho Beyon, Bull. Korean Chemical Society, 2004, 25(4),1051-1054 https://doi.org/10.5012/bkcs.2004.25.7.1051
  38. B. Tareev, Physics of Dielectric Materials, Mir Publishers, Moscow, (1979) Ch.3
  39. S. Ogura, K. Soto and Y. Inoue, J. Phys. Chem. Chem. Phys. 2002, 2, 2449
  40. J.B. MacChesney et al. J. Am. Cearm. Soc. 1963, 46(5), 197 https://doi.org/10.1111/j.1151-2916.1963.tb19771.x
  41. R. L. Cook and V. J. Tennery, J. Am. Ceram. Soc., 1961, 44(4), 187 https://doi.org/10.1111/j.1151-2916.1961.tb13742.x
  42. H. Inokuchi, Solid State Physics, edited by L. Jacob, Dover Publications, USA,1965, 45
  43. David Adler, The Imperfect SolidTransport Properties Treatise in Solid State Chemistry, Edited by N. B. Hanny, Plenum Press, USA, 1975, 237-321
  44. G. E. Pike, Phys. Rev. B 1972, 6, 1571
  45. R. K. Rajesh and C. S. Menon Indian journal of Pure and applied physics, 2005, 43, 964
  46. Shklovskii B. I. and Efros A. L., Electronic properties of doped semiconductors (Springler, Berlin), 1984
  47. B. P. Das, R. N. P. Choudhary and P. K. Mahapatra, Mater. Sci. Eng. B 2003, 104 96 https://doi.org/10.1016/S0921-5107(03)00311-8
  48. D.Pal, Shripal, J. Mater. Sci.: Materials in Electronics 2007, 18, 401 https://doi.org/10.1007/s10854-006-9045-z
  49. Dharmendra Pal, Prem Chand and Shripal, Proceeding of NSFD-XIII, 2004, 39
  50. Alka Tangri, Pradeep Mishra, D. Pal, Int. J. Chem. Sci. 2005, 3(4), 715-720

Cited by

  1. Influence of copper doping on structural and dielectric response on sodium lithium tri titanates (Na1.9Li0.1)Ti3O7:X Cu (0.0 ≤ X ≤ 0.1) vol.23, pp.10, 2012, https://doi.org/10.1007/s10854-012-0671-3
  2. Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K2Ti4O9 as material for K ions battery vol.26, pp.9, 2015, https://doi.org/10.1007/s10854-015-3265-z