DOI QR코드

DOI QR Code

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Borse, Pramod H. (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Jae-Sung (Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARC International)) ;
  • Jung, Ok-Sang (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cho, Chae-Ryong (Department of Chemistry (BK21), Pusan National University) ;
  • Jeong, Euh-Duck (Department of Nano Fusion Technology, Pusan National University) ;
  • Ha, Myoung-Gyu (Busan Center, Korea Basic Science Institute) ;
  • Won, Mi-Sook (Busan Center, Korea Basic Science Institute) ;
  • Kim, Hyun-Gyu (Busan Center, Korea Basic Science Institute)
  • Published : 2009.08.20

Abstract

Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Keywords

References

  1. Kim, H. G.; Hwang, D. W.; Lee, J. S. J. Am. Chem. Soc. 2004, 126, 8913
  2. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286 https://doi.org/10.1021/ja0518777
  3. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2002, 424, 625 https://doi.org/10.1038/424625a
  4. Kim, S. W.; Khan, R.; Kim, T. J.; Kim, W. Bull. Korean Chem. Soc. 2008, 29, 1217 https://doi.org/10.5012/bkcs.2008.29.6.1217
  5. Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
  6. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243 https://doi.org/10.1126/science.1075035
  7. Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908 https://doi.org/10.1002/anie.200351577
  8. Subramanian, E.; Baeg, J.; Kale, B. B.; Lee, S. M.; Moon, S.; Kong, K. Bull. Korean Chem. Soc. 2007, 28, 2089 https://doi.org/10.5012/bkcs.2007.28.11.2089
  9. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S. Angew. Chem. Int. Ed. 2005, 44, 4585 https://doi.org/10.1002/anie.200500064
  10. Kim, H. G.; Jeong, E. D.; Borse, P. H.; Jeon, S.; Yong, K. J.; Lee, J. S.; Li, W.; Oh, S. H. Appl. Phys. Letts. 2006, 89, 064103 https://doi.org/10.1063/1.2266237
  11. Jang, J. S.; Hwang, D. W.; Lee, J. S. Catal. Today 2007, 120, 174 https://doi.org/10.1016/j.cattod.2006.07.052
  12. Ikeda, S.; Hara, M.; Kondo, J. N.; Domen, K. Chem. Mater. 1998, 10, 72 https://doi.org/10.1021/cm970221c
  13. Jang, J. S.; Kim, H. G.; Ji, S. M.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1067
  14. Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91, 193 https://doi.org/10.1023/B:CATL.0000007154.30343.23
  15. Jung, E. D.; Borse, P. H.; Jang, J. S.; Lee, J. S.; Cho, C. R.; Bae, J. S.; Park, S.; Jung, O. S.; Ryu, S. M.; Won, M. S.; Kim, H. G. J. Nanosci. Nanotech. 2009, 9, 3568 https://doi.org/10.1166/jnn.2009.NS31
  16. Khan, R.; Kim, S. W.; Kim, T.; Lee, H. Bull. Korean Chem. Soc. 2007, 28, 1951 https://doi.org/10.5012/bkcs.2007.28.11.1951
  17. Cullity, B. D. Elements of X-ray Diffraction, 2nd Ed; Addison-Wesley Publishing Company, Inc.: Reading, MA 1978
  18. Lee, J.; Choi, W. J. Phys. Chem. B 2005, 109, 7399 https://doi.org/10.1021/jp044425+

Cited by

  1. –Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation vol.50, pp.12, 2011, https://doi.org/10.1021/ie200162a
  2. Ti-dopant-enhanced photocatalytic activity of a CaFe2O4/MgFe2O4 bulk heterojunction under visible-light irradiation vol.61, pp.1, 2012, https://doi.org/10.3938/jkps.61.73
  3. Nanocrystal as Calcined Products of Layered Double Hydroxides vol.2014, pp.2314-4939, 2014, https://doi.org/10.1155/2014/732163
  4. Glimpses of the modification of perovskite with graphene-analogous materials in photocatalytic applications vol.2, pp.9, 2015, https://doi.org/10.1039/C5QI00124B
  5. ≤ 0.5) Nanostructures: Structural, Morphological, Opto-Magnetic, and Photocatalytic Properties vol.46, pp.9, 2016, https://doi.org/10.1080/15533174.2015.1004454
  6. Fabrication, adsorption and photocatalytic properties of ZnTi0.6Fe1.4O4/Carbon nanotubes composites vol.59, pp.8, 2016, https://doi.org/10.1007/s11426-015-0502-4
  7. Perforated ZnFe2O4/ZnO hybrid nanosheets: enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation vol.123, pp.7, 2017, https://doi.org/10.1007/s00339-017-1086-z